[en] Nowadays, recommender systems have become an indispens-
able part of our daily life and provide personalized services for almost
everything. However, nothing is for free – such systems have also upset
the society with severe privacy concerns because they accumulate a lot of
personal information in order to provide recommendations. In this work,
we construct privacy-preserving recommendation protocols by incorpo-
rating cryptographic techniques and the inherent data characteristics in
recommender systems. We first revisit the protocols by Jeckmans et al.
and show a number of security issues. Then, we propose two privacy-
preserving protocols, which compute predicted ratings for a user based
on inputs from both the user’s friends and a set of randomly chosen
strangers. A user has the flexibility to retrieve either a predicted rating
for an unrated item or the Top-N unrated items. The proposed protocols
prevent information leakage from both protocol executions and the pro-
tocol outputs. Finally, we use the well-known MovieLens 100k dataset to
evaluate the performances for different parameter sizes.
Centre de recherche :
SnT
Disciplines :
Sciences informatiques
Auteur, co-auteur :
TANG, Qiang ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
WANG, Jun ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Privacy-Preserving Context-Aware Recommender Systems: Analysis and New Solutions
Date de publication/diffusion :
septembre 2015
Nom de la manifestation :
Computer Security - ESORICS 2015 - 20th European Symposium on Research in Computer Security
Date de la manifestation :
September 21-25, 2015
Manifestation à portée :
International
Titre de l'ouvrage principal :
Computer Security - ESORICS 2015 - 20th European Symposium on Research in Computer Security
Peer reviewed :
Peer reviewed
Projet FnR :
FNR5856658 - Boosting Security And Efficiency In Recommender Systems, 2013 (15/04/2014-14/04/2017) - Qiang Tang
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734-749 (2005)
Aïmeur, E., Brassard, G., Fernandez, J.M., Onana, F.S.M.: Alambic: a privacypreserving recommender system for electronic commerce. Int. J. Inf. Secur. 7, 307-334 (2008)
Beye, M., Jeckmans, A., Erkin, Z., Tang, Q., Hartel, P., Lagendijk, I.: Privacy in recommender systems. In: Zhou, S., Wu, Z. (eds.) ADMA 2012 Workshops. CCIS, vol. 387, pp. 263-281. Springer, Heidelberg (2013)
Bilge, A., Polat, H.: A scalable privacy-preserving recommendation scheme via bisecting k-means clustering. Inf. Process. Manag. 49(4), 912-927 (2013)
Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505-524. Springer, Heidelberg (2011)
Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V.: “You might also like:” privacy risks of collaborative filtering. In: 32nd IEEE Symposium on Security and Privacy, S & P 2011, pp. 231-246 (2011)
Canny, J.F.: Collaborative filtering with privacy. In: IEEE Symposium on Security and Privacy, pp. 45-57 (2002)
Canny, J.F.: Collaborative filtering with privacy via factor analysis. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 238-245 (2002)
Chenal, M., Tang, Q.: On key recovery attacks against existing somewhat homomorphic encryption schemes. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 239-258. Springer, Heidelberg (2015)
Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251-260. Springer, Heidelberg (2002)
Erkin, Z., Beye, M., Veugen, T., Lagendijk, R.L.: Efficiently computing private recommendations. In: International Conference on Acoustic, Speech and Signal Processing (2011)
Han, S., Ng, W.K., Yu, P.S.: Privacy-preserving singular value decomposition. In: Ioannidis, Y.E., Lee, D.L., Ng, R.T. (eds.) Proceedings of the 25th International Conference on Data Engineering, pp. 1267-1270. IEEE, Shanghai (2009)
Jeckmans, A., Peter, A., Hartel, P.: Efficient privacy-enhanced familiarity-based recommender system. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 400-417. Springer, Heidelberg (2013)
Jeckmans, A., Tang, Q., Hartel, P.: Privacy-preserving collaborative filtering based on horizontally partitioned dataset. In: 2012 International Symposium on Security in Collaboration Technologies and Systems (CTS 2012), pp. 439-446 (2012)
Kantarcioglu, M., Jin, J., Clifton, C.: When do data mining results violate privacy. In: The Tenth ACM SIGMOD International Conference on Knowledge Discovery and Data Mining, pp. 599-604. ACM (2004)
Lam, S.K.T., Frankowski, D., Riedl, J.: Do you trust your recommendations? An exploration of security and privacy issues in recommender systems. In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 14-29. Springer, Heidelberg (2006)
Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collaborative filtering. In: Kargupta, H., Srivastava, J., Kamath, C., Goodman, A. (eds.) Proceedings of the 2005 SIAM International Conference on Data Mining, SDM 2005, pp. 471-475. SIAM, California (2005)
McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the Netflix prize contenders. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 627-636 (2009)
Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.: Privacypreserving matrix factorization. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security, pp. 801-812 (2013)
Parameswaran, R.: A robust data obfuscation approach for privacy preserving collaborative filtering. Ph.D. thesis, Georgia Institute of Technology (2006)
Polat, H., Du, W.: Privacy-preserving collaborative filtering using randomized perturbation techniques. In: Proceedings of the Third IEEE International Conference on Data Mining, pp. 625-628 (2003)
Polat, H., Du, W.: Privacy-preserving collaborative filtering. Int. J. Electron. Commer. 9, 9-36 (2005)
Polat, H., Du, W.: Privacy-preserving collaborative filtering on vertically partitioned data. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 651-658. Springer, Heidelberg (2005)
Polat, H., Du, W.: Privacy-preserving top-n recommendation on horizontally partitioned data. In: 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2005), pp. 725-731. IEEE Computer Society (2005)
Polat, H., Du, W.: SVD-based collaborative filtering with privacy. In: Proceedings of the 2005 ACM Symposium on Applied Computing (SAC), pp. 791-795. ACM (2005)
Polat, H., Du, W.: Achieving private recommendations using randomized response techniques. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 637-646. Springer, Heidelberg (2006)
Polat, H., Du, W.: Privacy-preserving top-N recommendation on distributed data. J. Am. Soc. Inf. Sci. Technol. 59, 1093-1108 (2008)
Ramakrishnan, N., Keller, B.J., Mirza, B.J., Grama, A.Y.: Privacy risks in recommender systems. IEEE Internet Comput. 5, 54-63 (2001)
Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 257-297. Springer, USA (2011)
Shokri, R., Pedarsani, P., Theodorakopoulos, G., Hubaux, J.: Preserving privacy in collaborative filtering through distributed aggregation of offline profiles. In: Proceedings of the Third ACM Conference on Recommender Systems (RecSys 2009), pp. 157-164 (2009)
Tang, Q.: Cryptographic framework for analyzing the privacy of recommender algorithms. In: 2012 International Symposium on Security in Collaboration Technologies and Systems (CTS 2012), pp. 455-462 (2012)
Tang, Q., Wang, J.: Privacy-preserving context-aware recommender systems: analysis and new solutions (2015). http://eprint.iacr.org/2015/364
Veugen, T.: Comparing encrypted data (2011). http://bioinformatics.tudelft.nl/ sites/default/files/Comparing
Weinsberg, U., Bhagat, S., Ioannidis, S., Taft, N.: BlurMe: inferring and obfuscating user gender based on ratings. In: Cunningham, P., Hurley, N.J., Guy, I., Anand, S.S. (eds.) Sixth ACM Conference on Recommender Systems, RecSys 2012, pp. 195-202. ACM, New York (2012)
Yakut, I., Polat, H.: Arbitrarily distributed data-based recommendations with privacy. Data Knowl. Eng. 72, 239-256 (2012)
Zhan, J., Hsieh, C., Wang, I., Hsu, T., Liau, C., Wang, D.: Privacy-preserving collaborative recommender systems. Trans. Sys. Man Cyber Part C 40, 472-476 (2010)