Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Compressive Sensing based Target Counting and Localization Exploiting Joint Sparsity
LAGUNAS, Eva; SHARMA, Shree Krishna; CHATZINOTAS, Symeon et al.
2016In Proc. IEEE ICASSP 2016
Peer reviewed
 

Documents


Texte intégral
icassp2016_camready.pdf
Preprint Auteur (254.94 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Wireless sensor networks; Target counting; Target localization; Compressive sensing.
Résumé :
[en] One of the fundamental issues in Wireless Sensor Networks (WSN) is to count and localize multiple targets accurately. In this context, there has been an increasing interest in the literature in using Compressive Sensing (CS) based techniques by exploiting the sparse nature of spatially distributed targets within the monitored area. However, most existing works aim to count and localize the sparse targets utilizing a Single Measurement Vector (SMV) model. In this paper, we consider the problem of counting and localizing multiple targets exploiting the joint sparsity feature of a Multiple Measurement Vector (MMV) model. Furthermore, the conventional MMV formulation in which the same measurement matrix is used for all sensors is not valid any more in practical time-varying wireless environments. To overcome this issue, we reformulate the MMV problem into a conventional SMV in which MMVs are vectorized. Subsequently, we propose a novel reconstruction algorithm which does not need the prior knowledge of the sparsity level unlike the most existing CS-based approaches. Finally, we evaluate the performance of the proposed algorithm and demonstrate the superiority of the proposed MMVapproach over its SMV counterpart in terms of target counting and localization accuracies.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
LAGUNAS, Eva  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SHARMA, Shree Krishna ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Compressive Sensing based Target Counting and Localization Exploiting Joint Sparsity
Date de publication/diffusion :
mars 2016
Nom de la manifestation :
IEEE ICASSP 2016
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Shangai, Chine
Date de la manifestation :
from 20-03-1016 to 25-03-2016
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proc. IEEE ICASSP 2016
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 27 janvier 2016

Statistiques


Nombre de vues
336 (dont 23 Unilu)
Nombre de téléchargements
627 (dont 17 Unilu)

citations Scopus®
 
28
citations Scopus®
sans auto-citations
27

Bibliographie


Publications similaires



Contacter ORBilu