[en] Composite adaptive control (CAC) that integrates direct and indirect adaptive control techniques can achieve smaller tracking errors and faster parameter convergence compared with direct and indirect adaptive control techniques. However, the condition of persistent excitation (PE) still has to be satisfied to guarantee parameter convergence in CAC. This paper proposes a novel model reference composite learning control (MRCLC) strategy for a class of affine nonlinear systems with parametric uncertainties to guarantee parameter convergence without the PE condition. In the composite learning, an integral during a movingtime window is utilized to construct a prediction error, a linear filter is applied to alleviate the derivation of plant states, and both the tracking error and the prediction error are applied to update parametric estimates. It is proven that the closed-loop system achieves global exponential-like stability under interval excitation rather than PE of regression functions. The effectiveness of the proposed MRCLC strategy has been verified by the application to an inverted pendulum control problem.
Centre de recherche :
SnT
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
PAN, Lin ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Composite Learning Control With Application to Inverted Pendulums
Date de publication/diffusion :
01 décembre 2015
Nom de la manifestation :
Chinese Automation Congress (CAC), 2015
Organisateur de la manifestation :
Chinese Automation Congress (CAC), 2015
Lieu de la manifestation :
Wuhan, Chine
Date de la manifestation :
from 26-11-2015 to 30-11-2015
Sur invitation :
Oui
Manifestation à portée :
International
Titre de l'ouvrage principal :
IEEE International Conference - Chinese Automation Congress (CAC), 2015
K. J. Astrom and B. Wittenmark, Adaptive Control, 2nd ed. Mineola, NY, USA: Dover, 2008.
A. Astolfi, D. Karagiannis, and R. Ortega, Nonlinear and Adaptive Control with Applications. London, UK: Springer, 2008.
B. D. O. Anderson and A. Dehghani, "Challenges of adaptive controlpast, permanent and future, " Annu. Rev. Control, vol. 32, no. 2, pp. 123-135, Dec. 2008.
M. Stefanovic and M. G. Safonov, Safe Adaptive Control: Data-Driven Stability Analysis and Robust Synthesis. London, UK: Springer, 2011.
K. S. Narendra and Z. Han, "The changing face of adaptive control: The use of multiple models, " Annu. Rev. Control, vol. 35, no. 1, pp. 1-12, Apr. 2011.
A. Casavola, J. Hespanha, and P. Ioannou, "Special issue on recent trends on the use of switching and mixing in adaptive control, " Int. J. Adapt. Control Signal Process., vol. 26, no. 8, pp. 690-691, Aug. 2012.
S. G. Khan, G. Herrmann, F. L. Lewis, T. Pipe, and C. Melhuish, "Reinforcement learning and optimal adaptive control: An overview and implementation examples, " Annu. Rev. Control, vol. 36, no. 1, pp. 42-59, Apr. 2012.
J. M. Martin-Sanchez, J. M. Lemos, and J. Rodellar, "Survey of industrial optimized adaptive control, " Int. J. Adapt. Control Signal Process., vol. 26, no. 10, pp. 881-918, Oct. 2012.
K. B. Pathak and D. M. Adhyaru, "Survey of model reference adaptive control, " in Proc. Nirma University International Conference on Engineering, Ahmedabad, India, 2012, pp. 1-6.
E. Lavretsky and K. A. Wise, Robust and Adaptive Control: With Aerospace Applications. London, UK: Springer, 2013.
A. Serrani, "An output regulation perspective on the model reference adaptive control problem, " Int. J. Adapt. Control Signal Process., vol. 27, no. 1-2, pp. 22-34, Jan. 2013.
J. Sun, M. Krstic, and N. Bekiaris-Liberis, "Robust adaptive control: legacies and horizons, " Int. J. Adapt. Control Signal Process., vol. 27, no. 1-2, pp. 1-3, Jan. 2013.
I. Barkana, "Simple adaptive control-A stable direct model reference adaptive control methodology-brief survey, " Int. J. Adapt. Control Signal Process., vol. 28, no. 7-8, pp. 567-603, Jul. 2014.
L. P. Chan, F. Naghdy, and D. Stirling, "Application of adaptive controllers in teleoperation systems: A survey, " IEEE Trans. Hum.-Mach. Syst., vol. 44, no. 3, pp. 337-352, Jun. 2014.
P. Swarnkar, S. K. Jain, and R. K. Nema, "Adaptive control schemes for improving the control system dynamics: A review, " IETE Tech. Rev., vol. 31, no. 1, pp. 17-33, Jan-Feb. 2014.
G. Tao, "Multivariable adaptive control: A survey, " Automatica, vol. 50, no. 11, pp. 2737-2764, Nov. 2014.
P. A. Ioannou and J. Sun, Robust Adaptive Control. Englewood Cliffs, NJ: Prentice Hall, 1996.
J.-J. E. Slotine and W. Li, "Composite adaptive control of robot manipulators, " Automatica, vol. 25, no. 4, pp. 509-519, Jul. 1989.
D. Naso, F. Cupertino, and B. Turchiano, "Precise position control of tubular linear motors with neural networks and composite learning, " Control Eng. Practice, vol. 18, no. 5, pp. 515-522, May 2010.
A. Mohanty and B. Yao, "Integrated direct/indirect adaptive robust control of hydraulic manipulators with valve deadband, " IEEE-ASME Trans. Mechatron., vol. 16, no. 4, pp. 707-715, Aug. 2011.
P. M. Patre, S. Bhasin, Z. D. Wilcox, and W. E. Dixon, "Composite adaptation for neural network-based controllers, " IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 944-950, Apr. 2010.
C. Hu, B. Yao, and Q. Wang, "Integrated direct/indirect adaptive robust contouring control of a biaxial gantry with accurate parameter estimations, " Automatica, vol. 46, no. 4, pp. 701-707, Apr. 2010.
Y. P. Pan, M. J. Er, and T. R. Sun, "Composite adaptive fuzzy control for synchronizing generalized Lorenz systems, " Chaos, vol. 22, no. 2, Article ID 023144, Jun. 2012.
Y. P. Pan, Y. Zhou, T. R. Sun, and M. J. Er, "Composite adaptive fuzzy H∞ tracking control of uncertain nonlinear systems, " Neurocomputing, vol. 99, pp. 15-24, Jan. 2013.
X. J. Wei, N. Chen, and W. Q. Li, "Composite adaptive disturbance observer-based control for a class of nonlinear systems with multisource disturbance, " Int. J. Adapt. Control Signal Process., vol. 27, no. 3, pp. 199-208, Mar. 2013.
Z. T. Dydek, A. M. Annaswamy, J. J. E. Slotine, and E. Lavretsky, "Composite adaptive posicast control for a class of LTI plants with known delay, " Automatica, vol. 49, pp. 1914-1924, Jun. 2013.
G. V. Chowdhary and E. N. Johnson, "Concurrent learning for convergence in adaptive control without persistency of excitation, " in Proc. IEEE Conf. Decision Control, Atlanta, GA, 2010, pp. 3674-3679.
G. V. Chowdhary, M. Muhlegg, and E. N. Johnson, "Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation, " Int. J. Control, vol. 87, no. 8, pp. 1583-1603, May 2014.
G. V. Chowdhary and E. N. Johnson, "Theory and flight-Test validation of a concurrent-learning adaptive controller, " J. Guid. Control Dyn., vol. 34, no. 2, pp. 592-607, 2011.
P. J. Antsaklis, "Intelligent learning control, " IEEE Control Syst. Mag., vol. 15, no. 3, pp. 5-7, Jun. 1995.
J. C. Hu and H. H. Zhang, "Immersion and invariance based commandfiltered adaptive backstepping control of VTOL vehicles, " Automatica, vol. 49, no. 7, pp. 2160-2167, Jul. 2013.
K. Y. Volyanskyy, W. M. Haddad, and A. J. Calise, "A new neuroadaptive control architecture for nonlinear uncertain dynamical systems: beyond δ-And e-modifications, " IEEE Trans. Neural Netw., vol. 20, no. 11, pp. 1707-1723, Nov. 2009.
S. V. Joshi, A. Sreenatha, and J. Chandrasekhar, "Suppression of wing rock of slender delta wings using a single neuron controller, " IEEE Trans. Autom. Control Syst. Tech., vol. 6, pp. 671-677, Sep. 1998.
Y. P. Pan and M. J. Er, "Enhanced adaptive fuzzy control with optimal approximation error convergence, " IEEE Trans. Fuzzy Syst., vol. 21, no. 6, pp. 1123-1132, Dec. 2013.
Y. P. Pan and H. Y. Yu, "Dynamic surface control via singular perturbation analysis, " Automatica, vol. 51, pp. 29-33, Jul. 2015.