DODER, Dragan ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Ognjanovic, Zoran; Serbian Academy of Science and Arts > Institute of Mathematics
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A Probabilistic Logic for Reasoning about Uncertain Temporal Information
Date de publication/diffusion :
2015
Nom de la manifestation :
31st Conference on Uncertainty in Artificial Intelligence (UAI 2015)
Lieu de la manifestation :
Amsterdam, Pays-Bas
Date de la manifestation :
July 12th to July 16th, 2015
Manifestation à portée :
International
Titre de l'ouvrage principal :
Uncertainty in Artificial Intelligence: Proceedings of the Thirty-First Conference (2015)
ISBN/EAN :
978-0-9966431-0-8
Pagination :
267-276
Peer reviewed :
Peer reviewed
Projet FnR :
FNR6915214 - Probabilistic Reliability Management And Its Applications In Argumentation Theory And Tracking Objects, 2013 (01/06/2014-31/05/2016) - Dragan Doder
Ash, R. B. and Doléans-Dade, C. A. (1999). Probability & Measure Theory, Second Edition. Academic Press, 2 edition.
Canny, J. F. (1988). Some algebraic and geometric computations in PSPACE. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 460-467.
Donaldson, R. and Gilbert, D. (2008). A monte carlo model checker for probabilistic ltl with numerical constraints. Technical report, University of Glasgow, Department of Computing Science.
Emerson, A. E. (1990). Temporal and modal logic. pages 995-1072.
Emerson, E. A. (1995). Automated temporal reasoning about reactive systems. In Logics for Concurrency - Structure versus Automata (8th Banff Higher Order Workshop, August 27 - September 3, 1995, Proceedings), pages 41-101.
Fagin, R., Halpern, J. Y., and Megiddo, N. (1990). A logic for reasoning about probabilities. Inf. Comput., 87(1/2):78-128.
Feldman, Y. A. (1984). A decidable propositional dynamic logic with explicit probabilities. Information and Control, 63(1/2):11-38.
Gabbay, D. M., Pnueli, A., Shelah, S., and Stavi, J. (1980). On the temporal basis of fairness. In Conference Record of the Seventh Annual ACM Symposium on Principles of Programming Languages, Las Vegas, Nevada, USA, January 1980, pages 163-173.
Grant, J., Parisi, F., Parker, A., and Subrahmanian, V. S. (2010). An agm-style belief revision mechanism for probabilistic spatio-temporal logics. Artif. Intell., 174(1):72-104.
Guelev, D. P. (2000). Probabilistic neighbourhood logic. In Formal Techniques in Real-Time and Fault-Tolerant Systems, 6th International Symposium, FTRTFT 2000, Pune, India, September 20-22, 2000, Proceedings, pages 264-275.
Haddawy, P. (1996). A logic of time, chance, and action for representing plans. Artif. Intell., 80(1-2):243-308.
Halpern, J. Y. and Pucella, R. (2006). A logic for reasoning about evidence. J. Artif. Intell. Res. (JAIR), 26:1-34.
Hansson, H. and Jonsson, B. (1994). A logic for reasoning about time and reliability. Formal Asp. Comput., 6(5):512-535.
Kechris, A. S. (1995). Classical Descriptive Set Theory (Graduate Texts in Mathematics) (v. 156). Springer, 1 edition.
Kozen, D. (1985). A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162-178.
Lehmann, D. J. and Shelah, S. (1982). Reasoning with time and chance. Information and Control, 53(3):165-198.
Marinkovic, B., Ognjanovic, Z., Doder, D., and Perovic, A. (2014). A propositional linear time logic with time flow isomorphic to ω2. J. Applied Logic, 12(2):208-229.
Nilsson, N. J. (1986). Probabilistic logic. Artif. Intell., 28(1):71-87.
Ognjanovic, Z. (2006). Discrete linear-time probabilistic logics: Completeness, decidability and complexity. J. Log. Comput., 16(2):257-285.
Perovic, A., Ognjanovic, Z., Raskovic, M., and Markovic, Z. (2008). A probabilistic logic with polynomial weight formulas. In Foundations of Information and Knowledge Systems, 5th International Symposium, FoIKS 2008, Pisa, Italy, February 11-15, 2008, Proceedings, pages 239-252.
Prior, A. (1957). Time and Modality. Clarendon Press, Oxford.
Reynolds, M. (2001). An axiomatization of full computation tree logic. J. Symb. Log., 66(3):1011-1057.
Shakarian, P., Parker, A., Simari, G. I., and Subrahmanian, V. S. (2011). Annotated probabilistic temporal logic. ACM Trans. Comput. Log., 12(2):14.
Sistla, A. P. and Clarke, E. M. (1985). The complexity of propositional linear temporal logics. J. ACM, 32(3):733-749.
van der Hoek, W. (1997). Some considerations on the logic pfd∼. Journal of Applied Non-Classical Logics, 7 (3).