Article (Scientific journals)
Quantization of spectral curves and DQ-modules
PETIT, François
2018In Journal of Noncommutative Geometry
Peer Reviewed verified by ORBi
 

Files


Full Text
quantumcurve.pdf
Author preprint (559.46 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Quantization; DQ-modules; spectral curve
Abstract :
[en] Given an holomorphic Higgs bundle on a compact Riemann surface of genus greater than one, we prove the existence of an holonomic DQ-module supported by the spectral curve associated to this bundle. Then, we relate quantum curves arising in various situations (quantization of spectral curves of Higgs Bundles, quantization of the A-polynomial...) to DQ-modules and show that a quantum curve and the DQ-module canonically associated to it have isomorphic sheaves of solutions.
Disciplines :
Mathematics
Author, co-author :
PETIT, François ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
External co-authors :
no
Language :
English
Title :
Quantization of spectral curves and DQ-modules
Publication date :
17 December 2018
Journal title :
Journal of Noncommutative Geometry
ISSN :
1661-6960
Publisher :
European Mathematical Society Publishing House, Zurich, Switzerland
Peer reviewed :
Peer Reviewed verified by ORBi
FnR Project :
FNR5707106 - Quantization Of Moduli Spaces, 2013 (01/09/2014-31/08/2017) - Martin Schlichenmaier
Funders :
FNR - Fonds National de la Recherche [LU]
Available on ORBilu :
since 25 November 2015

Statistics


Number of views
61 (4 by Unilu)
Number of downloads
167 (2 by Unilu)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
WoS citations
 
1

Bibliography


Similar publications



Contact ORBilu