Article (Périodiques scientifiques)
Describing the complexity of systems: multivariable "set complexity" and the information basis of systems biology.
Galas, David J.; Sakhanenko, Nikita A.; SKUPIN, Alexander et al.
2014In Journal of Computational Biology, 21 (2), p. 118-40
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Galas_Journal_Com_Biol_2014.pdf
Postprint Éditeur (814.24 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Algorithms; Computational Biology/methods; Computer Simulation; Models, Biological; Systems Biology/methods
Résumé :
[en] Context dependence is central to the description of complexity. Keying on the pairwise definition of "set complexity," we use an information theory approach to formulate general measures of systems complexity. We examine the properties of multivariable dependency starting with the concept of interaction information. We then present a new measure for unbiased detection of multivariable dependency, "differential interaction information." This quantity for two variables reduces to the pairwise "set complexity" previously proposed as a context-dependent measure of information in biological systems. We generalize it here to an arbitrary number of variables. Critical limiting properties of the "differential interaction information" are key to the generalization. This measure extends previous ideas about biological information and provides a more sophisticated basis for the study of complexity. The properties of "differential interaction information" also suggest new approaches to data analysis. Given a data set of system measurements, differential interaction information can provide a measure of collective dependence, which can be represented in hypergraphs describing complex system interaction patterns. We investigate this kind of analysis using simulated data sets. The conjoining of a generalized set complexity measure, multivariable dependency analysis, and hypergraphs is our central result. While our focus is on complex biological systems, our results are applicable to any complex system.
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Integrative Cell Signalling (Skupin Group)
Luxembourg Centre for Systems Biomedicine (LCSB): Experimental Neurobiology (Balling Group)
- Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Galas, David J.
Sakhanenko, Nikita A.
SKUPIN, Alexander  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
IGNAC, Tomasz ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Describing the complexity of systems: multivariable "set complexity" and the information basis of systems biology.
Date de publication/diffusion :
2014
Titre du périodique :
Journal of Computational Biology
ISSN :
1066-5277
eISSN :
1557-8666
Maison d'édition :
Mary Ann Liebert, Etats-Unis
Volume/Tome :
21
Fascicule/Saison :
2
Pagination :
118-40
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 03 novembre 2015

Statistiques


Nombre de vues
206 (dont 14 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
25
citations Scopus®
sans auto-citations
13
OpenCitations
 
28
citations OpenAlex
 
33
citations WoS
 
22

Bibliographie


Publications similaires



Contacter ORBilu