Article (Périodiques scientifiques)
Cubic Sieve Congruence of the Discrete Logarithm Problem, and fractional part sequences
VENKATESH, Srinivas Vivek; C. E. Veni Madhavan
2014In Journal of Symbolic Computation, 64, p. 22-34
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
csc_fps_jsc-final.pdf
Postprint Auteur (482.17 kB)
Télécharger

The final publication is available at http://www.sciencedirect.com/science/article/pii/S0747717113001703.


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computational number theory; Cryptanalysis; Diophantine equation; Discrete Logarithm Problem; Fractional part sequence
Résumé :
[en] The Cubic Sieve Method for solving the Discrete Logarithm Problem in prime fields requires a nontrivial solution to the Cubic Sieve Congruence (CSC) $ x^3 \equiv y^2 z (mod p) $, where 'p' is a given prime number. A nontrivial solution must also satisfy $ x^3 \neq y^2 z $ and $ 1 <= x,y,z < p^a $, where 'a' is a given real number such that $ 1/3 < a <= 1/2 $. The CSC problem is to find an efficient algorithm to obtain a nontrivial solution to CSC. CSC can be parametrized as $ x \equiv v^2 z (mod p) $ and $ y \equiv v^3 z (mod p) $. In this paper, we give a deterministic polynomial-time ($ O(ln^3 p) $ bit-operations) algorithm to determine, for a given 'v', a nontrivial solution to CSC, if one exists. Previously it took $ õ(p^a) $ time in the worst case to determine this. We relate the CSC problem to the gap problem of fractional part sequences, where we need to determine the non-negative integers 'N' satisfying the fractional part inequality $ {\theta N} < \phi $ ($ \theta $ and $ \phi $ are given real numbers). The correspondence between the CSC problem and the gap problem is that determining the parameter 'z' in the former problem corresponds to determining 'N' in the latter problem. We also show in the $ a = 1/2 $ case of CSC that for a certain class of primes the CSC problem can be solved deterministically in $ õ(p^{1/3}) $ time compared to the previous best of $ õ(p^{1/2}) $. It is empirically observed that about one out of three primes is covered by the above class.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
VENKATESH, Srinivas Vivek ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
C. E. Veni Madhavan;  Indian Institute of Science, Bangalore, India > Department of Computer Science and Automation
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Cubic Sieve Congruence of the Discrete Logarithm Problem, and fractional part sequences
Date de publication/diffusion :
2014
Titre du périodique :
Journal of Symbolic Computation
ISSN :
0747-7171
eISSN :
1095-855X
Maison d'édition :
Academic Press
Volume/Tome :
64
Pagination :
22-34
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 31 août 2015

Statistiques


Nombre de vues
154 (dont 2 Unilu)
Nombre de téléchargements
163 (dont 1 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
OpenCitations
 
0
citations OpenAlex
 
0
citations WoS
 
0

Bibliographie


Publications similaires



Contacter ORBilu