Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
Spectral Sequence Motif Discovery
COLOMBO, Nicolo; VLASSIS, Nikos
2014
 

Documents


Texte intégral
Spectral Sequence Motif Discovery.pdf
Postprint Auteur (414.22 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Sequence discovery tools play a central role in several fields of computational biology. In the framework of Transcription Factor binding studies, motif finding algorithms of increasingly high performance are required to process the big datasets produced by new high-throughput sequencing technologies. Most existing algorithms are computationally demanding and often cannot support the large size of new experimental data. We present a new motif discovery algorithm that is built on a recent machine learning technique, referred to as Method of Moments. Based on spectral decompositions, this method is robust under model misspecification and is not prone to locally optimal solutions. We obtain an algorithm that is extremely fast and designed for the analysis of big sequencing data. In a few minutes, we can process datasets of hundreds of thousand sequences and extract motif profiles that match those computed by various state-of-the-art algorithms.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
COLOMBO, Nicolo ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
VLASSIS, Nikos 
Langue du document :
Anglais
Titre :
Spectral Sequence Motif Discovery
Date de publication/diffusion :
2014
Disponible sur ORBilu :
depuis le 10 mai 2015

Statistiques


Nombre de vues
113 (dont 3 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu