Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Generating Complex and Faulty Test Data Through Model-Based Mutation Analysis
DI NARDO, Daniel; PASTORE, Fabrizio; BRIAND, Lionel
2015In Software Testing, Verification and Validation (ICST), 2015 IEEE Eighth International Conference on
Peer reviewed
 

Documents


Texte intégral
icst2015dan2.pdf
Postprint Éditeur (291.05 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Testing the correct behaviour of data processing systems in the presence of faulty data is extremely expensive. The data structures processed by these systems are often complex, with many data fields and multiple constraints among them. Software engineers, in charge of testing these systems, have to handcraft complex data files or databases, while ensuring compliance with the multiple constraints to prevent the generation of trivially invalid inputs. In addition, assessing test results often means analysing complex output and log data. Though many techniques have been proposed to automatically test systems based on models, little exists in the literature to support the testing of systems where the complexity is in the data consumed in input or produced in output, with complex constraints between them. In particular, such systems often need to be tested with the presence of faults in the input data, in order to assess the robustness and behaviour of the system in response to such faults. This paper presents an automated test technique that relies upon six generic mutation operators to automatically generate faulty data. The technique receives two inputs: field data and a data model, i.e. a UML class diagram annotated with stereotypes and OCL constraints. The annotated class diagram is used to tailor the behaviour of the generic mutation operators to the fault model that is assumed for the system under test and the environment in which it is deployed. Empirical results obtained with a large data acquisition system in the satellite domain show that our approach can successfully automate the generation of test suites that achieve slightly better instruction coverage than manual testing based on domain expertise.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Software Verification and Validation Lab (SVV Lab)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
DI NARDO, Daniel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
PASTORE, Fabrizio  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Generating Complex and Faulty Test Data Through Model-Based Mutation Analysis
Date de publication/diffusion :
avril 2015
Nom de la manifestation :
8th IEEE International Conference on Software Testing, Verification and Validation (ICST 2015)
Lieu de la manifestation :
Graz, Autriche
Date de la manifestation :
13-04-2015 to 17-04-2015
Manifestation à portée :
International
Titre de l'ouvrage principal :
Software Testing, Verification and Validation (ICST), 2015 IEEE Eighth International Conference on
Peer reviewed :
Peer reviewed
Projet FnR :
FNR4082113 - Regression Test Suite Management Strategies For Web Applications, 2012 (01/05/2012-30/04/2016) - Daniel Di Nardo
Disponible sur ORBilu :
depuis le 09 janvier 2015

Statistiques


Nombre de vues
548 (dont 131 Unilu)
Nombre de téléchargements
29 (dont 24 Unilu)

citations Scopus®
 
15
citations Scopus®
sans auto-citations
10
citations OpenAlex
 
16
citations WoS
 
6

Bibliographie


Publications similaires



Contacter ORBilu