Article (Périodiques scientifiques)
Multiscale model of dynamic neuromodulation integrating neuropeptide-induced signaling pathway activity with membrane electrophysiology.
Makadia, Hirenkumar K.; Anderson, Warren D.; Fey, Dirk et al.
2015In Biophysical Journal, 108 (1), p. 211-23
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
23400_1_merged_1414089837.pdf
Preprint Auteur (1.45 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] We developed a multiscale model to bridge neuropeptide receptor-activated signaling pathway activity with membrane electrophysiology. Typically, the neuromodulation of biochemical signaling and biophysics have been investigated separately in modeling studies. We studied the effects of Angiotensin II (AngII) on neuronal excitability changes mediated by signaling dynamics and downstream phosphorylation of ion channels. Experiments have shown that AngII binding to the AngII receptor type-1 elicits baseline-dependent regulation of cytosolic Ca(2+) signaling. Our model simulations revealed a baseline Ca(2+)-dependent response to AngII receptor type-1 activation by AngII. Consistent with experimental observations, AngII evoked a rise in Ca(2+) when starting at a low baseline Ca(2+) level, and a decrease in Ca(2+) when starting at a higher baseline. Our analysis predicted that the kinetics of Ca(2+) transport into the endoplasmic reticulum play a critical role in shaping the Ca(2+) response. The Ca(2+) baseline also influenced the AngII-induced excitability changes such that lower Ca(2+) levels were associated with a larger firing rate increase. We examined the relative contributions of signaling kinases protein kinase C and Ca(2+)/Calmodulin-dependent protein kinase II to AngII-mediated excitability changes by simulating activity blockade individually and in combination. We found that protein kinase C selectively controlled firing rate adaptation whereas Ca(2+)/Calmodulin-dependent protein kinase II induced a delayed effect on the firing rate increase. We tested whether signaling kinetics were necessary for the dynamic effects of AngII on excitability by simulating three scenarios of AngII-mediated KDR channel phosphorylation: (1), an increased steady state; (2), a step-change increase; and (3), dynamic modulation. Our results revealed that the kinetics emerging from neuromodulatory activation of the signaling network were required to account for the dynamical changes in excitability. In summary, our integrated multiscale model provides, to our knowledge, a new approach for quantitative investigation of neuromodulatory effects on signaling and electrophysiology.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Makadia, Hirenkumar K.
Anderson, Warren D.
Fey, Dirk
SAUTER, Thomas ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
Schwaber, James S.
Vadigepalli, Rajanikanth
Langue du document :
Anglais
Titre :
Multiscale model of dynamic neuromodulation integrating neuropeptide-induced signaling pathway activity with membrane electrophysiology.
Date de publication/diffusion :
2015
Titre du périodique :
Biophysical Journal
ISSN :
0006-3495
eISSN :
1542-0086
Maison d'édition :
Biophysical Society, Etats-Unis - Maryland
Volume/Tome :
108
Fascicule/Saison :
1
Pagination :
211-23
Peer reviewed :
Peer reviewed vérifié par ORBi
Commentaire :
Copyright (c) 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Disponible sur ORBilu :
depuis le 09 janvier 2015

Statistiques


Nombre de vues
240 (dont 8 Unilu)
Nombre de téléchargements
1 (dont 1 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
3
OpenCitations
 
5
citations OpenAlex
 
8
citations WoS
 
4

Bibliographie


Publications similaires



Contacter ORBilu