Article (Périodiques scientifiques)
Web Application Vulnerability Prediction using Hybrid Program Analysis and Machine Learning
SHAR, Lwin Khin; BRIAND, Lionel; Tan, Hee Beng Kuan
2015In IEEE Transactions on Dependable and Secure Computing, 12 (6), p. 688-707
Peer reviewed
 

Documents


Texte intégral
Web Application Vulnerability Prediction using Hybrid Program Analysis and Machine Learning.pdf
Preprint Auteur (33.91 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Vulnerability prediction; security measures; input validation and sanitization
Résumé :
[en] Due to limited time and resources, web software engineers need support in identifying vulnerable code. A practical approach to predicting vulnerable code would enable them to prioritize security auditing efforts. In this paper, we propose using a set of hybrid (static+dynamic) code attributes that characterize input validation and input sanitization code patterns and are expected to be significant indicators of web application vulnerabilities. Because static and dynamic program analyses complement each other, both techniques are used to extract the proposed attributes in an accurate and scalable way. Current vulnerability prediction techniques rely on the availability of data labeled with vulnerability information for training. For many real world applications, past vulnerability data is often not available or at least not complete. Hence, to address both situations where labeled past data is fully available or not, we apply both supervised and semi-supervised learning when building vulnerability predictors based on hybrid code attributes. Given that semi-supervised learning is entirely unexplored in this domain, we describe how to use this learning scheme effectively for vulnerability prediction. We performed empirical case studies on seven open source projects where we built and evaluated supervised and semi-supervised models. When cross validated with fully available labeled data, the supervised models achieve an average of 77% recall and 5% probability of false alarm for predicting SQL injection, cross site scripting, remote code execution and file inclusion vulnerabilities. With a low amount of labeled data, when compared to the supervised model, the semi- supervised model showed an average improvement of 24% higher recall and 3% lower probability of false alarm, thus suggesting semi-supervised learning may be a preferable solution for many real world applications where vulnerability data is missing.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SHAR, Lwin Khin ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Tan, Hee Beng Kuan;  Nanyang Technological University > School of Electrical and Electronic Engineering
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Web Application Vulnerability Prediction using Hybrid Program Analysis and Machine Learning
Date de publication/diffusion :
2015
Titre du périodique :
IEEE Transactions on Dependable and Secure Computing
ISSN :
1545-5971
Maison d'édition :
IEEE
Volume/Tome :
12
Fascicule/Saison :
6
Pagination :
688-707
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 28 octobre 2014

Statistiques


Nombre de vues
520 (dont 30 Unilu)
Nombre de téléchargements
10 (dont 4 Unilu)

citations Scopus®
 
120
citations Scopus®
sans auto-citations
120
citations OpenAlex
 
135
citations WoS
 
88

Bibliographie


Publications similaires



Contacter ORBilu