Article (Périodiques scientifiques)
Multi-objective evolutionary algorithms for energy-aware scheduling on distributed computing systems
GUZEK, Mateusz; PECERO, Johnatan; DORRONSORO, Bernabé et al.
2014In Applied Soft Computing, 24, p. 432-446
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
MOSched.pdf
Preprint Auteur (1.23 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Evolutionary algorithms; Multi-objective optimization;; Scheduling
Résumé :
[en] The ongoing increase of energy consumption by IT infrastructures forces data center managers to find innovative ways to improve energy efficiency. The latter is also a focal point for different branches of computer science due to its financial, ecological, political, and technical consequences. One of the answers is given by scheduling combined with dynamic voltage scaling technique to optimize the energy consumption. The way of reasoning is based on the link between current semiconductor technologies and energy state management of processors, where sacrificing the performance can save energy. This paper is devoted to investigate and solve the multi-objective precedence constrained application scheduling problem on a distributed computing system, and it has two main aims: the creation of general algorithms to solve the problem and the examination of the problem by means of the thorough analysis of the results returned by the algorithms. The first aim was achieved in two steps: adaptation of state-of-the-art multi-objective evolutionary algorithms by designing new operators and their validation in terms of performance and energy. The second aim was accomplished by performing an extensive number of algorithms executions on a large and diverse benchmark and the further analysis of performance among the proposed algorithms. Finally, the study proves the validity of the proposed method, points out the best-compared multi-objective algorithm schema, and the most important factors for the algorithms performance.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
GUZEK, Mateusz ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
PECERO, Johnatan ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
DORRONSORO, Bernabé ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BOUVRY, Pascal ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Langue du document :
Anglais
Titre :
Multi-objective evolutionary algorithms for energy-aware scheduling on distributed computing systems
Date de publication/diffusion :
novembre 2014
Titre du périodique :
Applied Soft Computing
ISSN :
1568-4946
eISSN :
1872-9681
Maison d'édition :
Elsevier, Amsterdam, Pays-Bas
Volume/Tome :
24
Pagination :
432-446
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 16 octobre 2014

Statistiques


Nombre de vues
285 (dont 18 Unilu)
Nombre de téléchargements
707 (dont 17 Unilu)

citations Scopus®
 
39
citations Scopus®
sans auto-citations
31
OpenCitations
 
33
citations OpenAlex
 
45
citations WoS
 
34

Bibliographie


Publications similaires



Contacter ORBilu