No document available.
Abstract :
[en] We present ab initio and self-consistent tight-binding calculations on the band structure of single wall semiconducting carbon nanotubes with high degrees (up to 25 %) of boron substitution. Besides a lowering of the Fermi energy into the valence band, a regular, periodic distribution of the p-dopants leads to the formation of a dispersive "acceptor"-like band in the band gap of the undoped tube. This comes from the superposition of acceptor levels at the boron atoms with the delocalized carbon pi-orbitals. Irregular (random) boron-doping leads to a high concentration of hybrids of acceptor and unoccupied carbon states above the Fermi edge.
Commentary :
0-7354-0154-3
MAR 08-15, 2003
17th International Winterschool/Euroconference on Electronic Properties of Novel Materials
Kirchberg
AUSTRIA
Kuzmany, H Fink, J Mehring, M Roth, S
Univ Wein, Inst Mat, Bruker, Analytis Mebtech GmbH, Credit Anstalt BankVerein, Electrovac GmbH, Jobin Yvon GmbH, Nanocyl SA, Omicron Vakuumphys GmbH