Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Improving Requirements Glossary Construction via Clustering: Approach and Industrial Case Studies
ARORA, Chetan; SABETZADEH, Mehrdad; BRIAND, Lionel et al.
2014In 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM 2014)
Peer reviewed
 

Documents


Texte intégral
ASBZ_ESEM14.pdf
Postprint Auteur (1.35 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Glossary; Term Extraction; Case Study Research; Natural Language Processing (NLP); Clustering
Résumé :
[en] Context. A glossary is an important part of any software requirements document. By making explicit the technical terms in a domain and providing definitions for them, a glossary serves as a helpful tool for mitigating ambiguities. Objective. A necessary step for building a glossary is to decide upon the glossary terms and to identify their related terms. Doing so manually is a laborious task. Our objective is to provide automated support for identifying candidate glossary terms and their related terms. Our work differs from existing work on term extraction mainly in that, instead of providing a flat list of candidate terms, our approach \emph{clusters} the terms by relevance. Method. We use case study research as the basis for our empirical investigation. Results. We present an automated approach for identifying and clustering candidate glossary terms. We evaluate the approach through two industrial case studies; one study concerns a satellite software component, and the other -- an evidence management tool for safety certification. Conclusion. Our results indicate that over requirements documents: (1) our approach is more accurate than other existing methods for identifying candidate glossary terms; this makes it less likely that our approach will miss important glossary terms. (2) Clustering provides an effective basis for grouping related terms; this makes clustering a useful support tool for selection of glossary terms and associating these terms with their related terms.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ARORA, Chetan ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SABETZADEH, Mehrdad ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Zimmer, Frank;  SES TechCom
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Improving Requirements Glossary Construction via Clustering: Approach and Industrial Case Studies
Date de publication/diffusion :
septembre 2014
Nom de la manifestation :
8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM 2014)
Lieu de la manifestation :
Italie
Date de la manifestation :
18-09-2014 to 19-09-2014
Titre de l'ouvrage principal :
8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM 2014)
Peer reviewed :
Peer reviewed
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 16 mai 2014

Statistiques


Nombre de vues
308 (dont 32 Unilu)
Nombre de téléchargements
10 (dont 5 Unilu)

citations Scopus®
 
15
citations Scopus®
sans auto-citations
9

Bibliographie


Publications similaires



Contacter ORBilu