Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Robust Traffic Anomaly Detection with Principal Component Pursuit
Abdelkefi, Atef; Jiang, Yuming; WANG, Wei et al.
2010In Proceedings of the ACM CoNEXT Student Workshop
 

Documents


Texte intégral
Wang.pdf
Postprint Auteur (162.03 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Principal component analysis (PCA) is a statistical technique that has been used for data analysis and dimensionality reduction. It was introduced as a network traffic anomaly detection technique firstly in [1]. Since then, a lot of research attention has been received, which results in an extensive analysis and several extensions. In [2], the sensitivity of PCA to its tuning parameters, such as the dimension of the low-rank subspace and the detection threshold, on traffic anomaly detection was indicated. However, no explanation on the underlying reasons of the problem was given in [2]. In [3], further investigation on the PCA sensitivity was conducted and it was found that the PCA sensitivity comes from the inability of PCA to detect temporal correlations. Based on this finding, an extension of PCA to Kalman-Loeve expansion (KLE) was proposed in [3]. While KLE shows slight improvement, it still exhibits similar sensitivity issue since a new tuning parameter called temporal correlation range was introduced. Recently, in [4], additional effort was paid to illustrate the PCA-poisoning problem. To underline this problem, an evading strategy called Boiled-Frog was proposed which adds a high fraction of outliers to the traffic. To defend against this, the authors employed a more robust version of PCA called PCA-GRID. While PCA-GRID shows performance improvement regarding the robustness to the outliers, it experiences a high sensitivity to the threshold estimate and the k-dimensional subspace that maximizes the dispersion of the data. The purpose of this work is to consider another technique to address the PCA poisoning problems to provide robust traffic anomaly detection: The Principal Component Pursuit.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Identifiants :
UNILU:UL-CONFERENCE-2010-533
Auteur, co-auteur :
Abdelkefi, Atef;  Q2S,Norwegian University of Science and Technology, Norway
Jiang, Yuming;  Q2S,Norwegian University of Science and Technology, Norway
WANG, Wei ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SnT)
Aslebo, Arne;  UNINETT, Norway
Kvittem, Olav;  UNINETT, Norway
Langue du document :
Anglais
Titre :
Robust Traffic Anomaly Detection with Principal Component Pursuit
Date de publication/diffusion :
2010
Nom de la manifestation :
ACM CoNEXT Student Workshop
Lieu de la manifestation :
Philadelphia, Etats-Unis - Pennsylvanie
Date de la manifestation :
November 30 - December 3, 2010
Titre de l'ouvrage principal :
Proceedings of the ACM CoNEXT Student Workshop
Maison d'édition :
ACM, New York, Etats-Unis - New York
ISBN/EAN :
978-1-4503-0468-9
Disponible sur ORBilu :
depuis le 13 mars 2014

Statistiques


Nombre de vues
167 (dont 1 Unilu)
Nombre de téléchargements
208 (dont 0 Unilu)

citations Scopus®
 
18
citations Scopus®
sans auto-citations
15
OpenCitations
 
16
citations OpenAlex
 
23
citations WoS
 
28

Bibliographie


Publications similaires



Contacter ORBilu