[en] We consider convex risk measures in a spatial setting, where the outcome of a financial position depends on the states at different nodes of a network. In analogy to the theory of Gibbs measures in Statistical Mechanics, we discuss the local specification of a global risk measure in terms of conditional local risk measures for the single nodes of the network, given their environment. Under a condition of local law invariance, we show that a consistent local specification must be of entropic form. Even in that case, a global risk measure may not be uniquely determined by the local specification, and this can be seen as a source of “systemic risk”, in analogy to the appearance of phase transitions in the theory of Gibbs measures
Disciplines :
Mathematics
Author, co-author :
Föllmer, Hans ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit ; Humboldt-Universität zu Berlin > Institut für Mathematik
Language :
English
Title :
Spatial Risk Measures and their Local Specification: The Locally Law-Invariant Case
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Similar publications
Sorry the service is unavailable at the moment. Please try again later.