Contribution à des ouvrages collectifs (Parties d’ouvrages)
Analysis and Improvement of the Generic Higher-Order Masking Scheme of FSE 2012
ROY, Arnab; VENKATESH, Srinivas Vivek
2013In Bertoni, Guido; Coron, Jean-Sébastien (Eds.) Cryptographic Hardware and Embedded Systems - CHES 2013
Peer reviewed
 

Documents


Texte intégral
maskingches_final.pdf
Postprint Auteur (415.48 kB)
Télécharger

The final publication is available at www.springerlink.com


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
block cipher; S-box; masking complexity; addition chain; polynomial evaluation; side-channel attack
Résumé :
[en] Masking is a well-known technique used to prevent block cipher implementations from side-channel attacks. Higher-order side channel attacks (e.g. higher-order DPA attack) on widely used block cipher like AES have motivated the design of efficient higher-order masking schemes. Indeed, it is known that as the masking order increases, the difficulty of side-channel attack increases exponentially. However, the main problem in higher-order masking is to design an efficient and secure technique for S-box computations in block cipher implementations. At FSE 2012, Carlet et al. proposed a generic masking scheme that can be applied to any S-box at any order. This is the first generic scheme for efficient software implementations. Analysis of the running time, or masking complexity, of this scheme is related to a variant of the well-known problem of efficient exponentiation (addition chain), and evaluation of polynomials. In this paper we investigate optimal methods for exponentiation in TeX by studying a variant of addition chain, which we call cyclotomic-class addition chain, or CC-addition chain. Among several interesting properties, we prove lower bounds on min-length CC-addition chains. We define the notion of TeX -polynomial chain, and use it to count the number of non-linear multiplications required while evaluating polynomials over TeX . We also give a lower bound on the length of such a chain for any polynomial. As a consequence, we show that a lower bound for the masking complexity of DES S-boxes is three, and that of PRESENT S-box is two. We disprove a claim previously made by Carlet et al. regarding min-length CC-addition chains. Finally, we give a polynomial evaluation method, which results into an improved masking scheme (compared to the technique of Carlet et al.) for DES S-boxes. As an illustration we apply this method to several other S-boxes and show significant improvement for them.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ROY, Arnab ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
VENKATESH, Srinivas Vivek ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Analysis and Improvement of the Generic Higher-Order Masking Scheme of FSE 2012
Date de publication/diffusion :
2013
Titre de l'ouvrage principal :
Cryptographic Hardware and Embedded Systems - CHES 2013
Editeur scientifique :
Bertoni, Guido
Coron, Jean-Sébastien
Maison d'édition :
Springer Berlin Heidelberg
ISBN/EAN :
978-3-642-40348-4
Collection et n° de collection :
Lecture Notes in Computer Science
Pagination :
417-434
Peer reviewed :
Peer reviewed
Commentaire :
8086
Disponible sur ORBilu :
depuis le 29 janvier 2014

Statistiques


Nombre de vues
210 (dont 6 Unilu)
Nombre de téléchargements
342 (dont 1 Unilu)

citations Scopus®
 
37
citations Scopus®
sans auto-citations
31
OpenCitations
 
25
citations OpenAlex
 
43

Bibliographie


Publications similaires



Contacter ORBilu