Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Low-Weight Primes for Lightweight Elliptic Curve Cryptography on 8-bit AVR Processors
LIU, Zhe; GROSZSCHÄDL, Johann; Wong, Duncan S.
2013In Lin, Dongdai; Xu, Shouhuai; Yung, Moti (Eds.) Information Security and Cryptology - 9th International Conference, INSCRYPT 2013, Guangzhou, China, November 27-30, 2013
Peer reviewed
 

Documents


Texte intégral
INSCRYPT2013.pdf
Postprint Éditeur (343.18 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Elliptic Curve Cryptography; Optimal Prime Fields; Multiple-Precision Arithmetic; Montgomery Multiplication; AVR Architecture
Résumé :
[en] Small 8-bit RISC processors and micro-controllers based on the AVR instruction set architecture are widely used in the embedded domain with applications ranging from smartcards over control systems to wireless sensor nodes. Many of these applications require asymmetric encryption or authentication, which has spurred a body of research into implementation aspects of Elliptic Curve Cryptography (ECC) on the AVR platform. In this paper, we study the suitability of a special class of finite fields, the so-called Optimal Prime Fields (OPFs), for a "lightweight" implementation of ECC with a view towards high performance and security. An OPF is a finite field Fp defined by a prime of the form p = u*2^k + v, whereby both u and v are "small" (in relation to 2^k) so that they fit into one or two registers of an AVR processor. OPFs have a low Hamming weight, which allows for a very efficient implementation of the modular reduction since only the non-zero words of p need to be processed. We describe a special variant of Montgomery multiplication for OPFs that does not execute any input-dependent conditional statements (e.g. branch instructions) and is, hence, resistant against certain side-channel attacks. When executed on an Atmel ATmega processor, a multiplication in a 160-bit OPF takes just 3237 cycles, which compares favorably with other implementations of 160-bit modular multiplication on an 8-bit processor. We also describe a performance-optimized and a security-optimized implementation of elliptic curve scalar multiplication over OPFs. The former uses a GLV curve and executes in 4.19M cycles (over a 160-bit OPF), while the latter is based on a Montgomery curve and has an execution time of approximately 5.93M cycles. Both results improve the state-of-the-art in lightweight ECC on 8-bit processors.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
LIU, Zhe ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
GROSZSCHÄDL, Johann ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Wong, Duncan S.;  City University of Hong Kong > Department of Computer Science
Langue du document :
Anglais
Titre :
Low-Weight Primes for Lightweight Elliptic Curve Cryptography on 8-bit AVR Processors
Date de publication/diffusion :
novembre 2013
Nom de la manifestation :
9th International Conference on Information Security and Cryptology (INSCRYPT 2013)
Lieu de la manifestation :
Guangzhou, Chine
Date de la manifestation :
from 27-11-2013 to 30-11-2013
Manifestation à portée :
International
Titre de l'ouvrage principal :
Information Security and Cryptology - 9th International Conference, INSCRYPT 2013, Guangzhou, China, November 27-30, 2013
Editeur scientifique :
Lin, Dongdai
Xu, Shouhuai
Yung, Moti
Maison d'édition :
Springer Verlag
ISBN/EAN :
978-3-319-12086-7
Collection et n° de collection :
Lecture Notes in Computer Science, volume 8567
Pagination :
217-235
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 11 janvier 2014

Statistiques


Nombre de vues
599 (dont 152 Unilu)
Nombre de téléchargements
577 (dont 20 Unilu)

citations Scopus®
 
14
citations Scopus®
sans auto-citations
8
OpenCitations
 
11
citations OpenAlex
 
18

Bibliographie


Publications similaires



Contacter ORBilu