No full text
Article (Scientific journals)
A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory.
Nogales, Juan; Palsson, Bernhard O.; Thiele, Ines
2008In BMC Systems Biology, 2, p. 79
Peer Reviewed verified by ORBi
 

Files


Full Text
No document available.

Send to



Details



Keywords :
Anaerobiosis; Computational Biology/methods; Computer Simulation; Databases, Genetic; Fatty Acids/metabolism; Gene Expression Regulation, Bacterial/physiology; Genome, Bacterial; Genomics/methods; Knowledge Bases; Metabolic Networks and Pathways/genetics; Models, Biological; Oxygen/metabolism; Polyhydroxyalkanoates/biosynthesis; Pseudomonas putida/genetics/metabolism; Toluene/metabolism
Abstract :
[en] BACKGROUND: Pseudomonas putida is the best studied pollutant degradative bacteria and is harnessed by industrial biotechnology to synthesize fine chemicals. Since the publication of P. putida KT2440's genome, some in silico analyses of its metabolic and biotechnology capacities have been published. However, global understanding of the capabilities of P. putida KT2440 requires the construction of a metabolic model that enables the integration of classical experimental data along with genomic and high-throughput data. The constraint-based reconstruction and analysis (COBRA) approach has been successfully used to build and analyze in silico genome-scale metabolic reconstructions. RESULTS: We present a genome-scale reconstruction of P. putida KT2440's metabolism, iJN746, which was constructed based on genomic, biochemical, and physiological information. This manually-curated reconstruction accounts for 746 genes, 950 reactions, and 911 metabolites. iJN746 captures biotechnologically relevant pathways, including polyhydroxyalkanoate synthesis and catabolic pathways of aromatic compounds (e.g., toluene, benzoate, phenylacetate, nicotinate), not described in other metabolic reconstructions or biochemical databases. The predictive potential of iJN746 was validated using experimental data including growth performance and gene deletion studies. Furthermore, in silico growth on toluene was found to be oxygen-limited, suggesting the existence of oxygen-efficient pathways not yet annotated in P. putida's genome. Moreover, we evaluated the production efficiency of polyhydroxyalkanoates from various carbon sources and found fatty acids as the most prominent candidates, as expected. CONCLUSION: Here we presented the first genome-scale reconstruction of P. putida, a biotechnologically interesting all-surrounder. Taken together, this work illustrates the utility of iJN746 as i) a knowledge-base, ii) a discovery tool, and iii) an engineering platform to explore P. putida's potential in bioremediation and bioplastic production.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Nogales, Juan
Palsson, Bernhard O.
Thiele, Ines 
Language :
English
Title :
A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory.
Publication date :
2008
Journal title :
BMC Systems Biology
ISSN :
1752-0509
Publisher :
BioMed Central, United Kingdom
Volume :
2
Pages :
79
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBilu :
since 12 December 2013

Statistics


Number of views
59 (1 by Unilu)
Number of downloads
0 (0 by Unilu)

Scopus citations®
 
185
Scopus citations®
without self-citations
170
OpenCitations
 
196
WoS citations
 
172

Bibliography


Similar publications



Contact ORBilu