Article (Scientific journals)
Higher congruence companion forms
ADIBHATLA, Rajender
2012In Acta Arithmetica, 156 (2), p. 17
Peer reviewed
 

Files


Full Text
adibhatla1.pdf
Author preprint (352.7 kB)
Download

The original publication is available at http://journals.impan.gov.pl/aa/


All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
modular forms; Galois representations
Abstract :
[en] For a rational prime p≥3 we consider p-ordinary, Hilbert modular newforms f of weight k≥2 with associated p-adic Galois representations \rho_f and mod p^n reductions \rho_{f,n}. Under suitable hypotheses on the size of the image, we use deformation theory and modularity lifting to show that if the restrictions of \rho_{f,n} to decomposition groups above p split then f has a companion form g modulo pn (in the sense that \rho_{f,n} \sim \rho_{g,n}\otimes \chi^{k−1}).
Disciplines :
Mathematics
Author, co-author :
ADIBHATLA, Rajender ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Language :
English
Title :
Higher congruence companion forms
Publication date :
October 2012
Journal title :
Acta Arithmetica
ISSN :
0065-1036
eISSN :
1730-6264
Publisher :
Seminarjum Matematyczne Uniwersytetu, Warszawa, Poland
Volume :
156
Issue :
2
Pages :
17
Peer reviewed :
Peer reviewed
Available on ORBilu :
since 20 November 2013

Statistics


Number of views
55 (1 by Unilu)
Number of downloads
89 (1 by Unilu)

Scopus citations®
 
3
Scopus citations®
without self-citations
2
OpenCitations
 
2
WoS citations
 
1

Bibliography


Similar publications



Contact ORBilu