Article (Périodiques scientifiques)
Projection-based reduction of fluid-structure interaction systems using monolithic space-time modes
ZILIAN, Andreas; Dinkler, D.; Vehre, A.
2009In Computer Methods in Applied Mechanics and Engineering, 198 (47-48), p. 3795-3805
Peer reviewed
 

Documents


Texte intégral
Zilian_Vehre_2009_CompMethAppMechEng.pdf
Postprint Éditeur (1.78 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Fluid-structure interaction; Monolithic model reduction; Space-time finite elements; Strong coupling; Algebraic equations; Computational approach; Conservation of mass; Discretized models; Engineering applications; Finite element meshes; Flow domains; Fluid-structure interfaces; Fluid-structure systems; Fluid-structures; Incompressible Navier Stokes equations; Large displacements; Mesh-moving schemes; Model equations; Newtonian fluids; Nodal coordinates; Nonlinear problems; Proper orthogonal decompositions; Reduced model; Simultaneous solution; Space and time; Space time finite element; Space-time finite element method; Spatial domains; Structural deformation; Total Lagrangian; Flexible structures; Fluid dynamics; Fluid structure interaction; Fluids; Linearization; Models; Navier Stokes equations; Set theory; Finite element method
Résumé :
[en] The focus of this work is the development of reduced models for engineering applications in complex bidirectional fluid-structure interaction. In the simultaneous solution procedure, velocity variables are used for both fluid and solid, and the whole set of model equations is discretized by a stabilized time-discontinuous space-time finite element method. Flexible structures are modeled using a three-dimensional continuum approach in a total Lagrangian setting considering large displacements and rotations. In the flow domain the incompressible Navier-Stokes equations describe the Newtonian fluid. A continuous finite element mesh is applied to the entire spatial domain, and the discretized model equations are assembled in a single set of algebraic equations, considering the two-field problem as a whole. The continuous fluid-structure mesh with identical orders of approximation for both solid and fluid in space and time automatically yields conservation of mass, momentum and energy at the fluid-structure interface. A mesh-moving scheme is used to adapt the nodal coordinates of the fluid space-time finite element mesh to the structural deformation. The computational approach for strongly coupled fluid-structure interaction is used to create suitable reduced models of generic nonlinear problems. Reduction is performed with monolithic projection-based space-time modes, ensuring strong coupling of fluid and structure in the reduced model. The contribution discusses results using proper orthogonal decomposition (POD) for determination of monolithic space-time modes in the reduction of fluid-structure systems. © 2009 Elsevier B.V. All rights reserved.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
ZILIAN, Andreas  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Dinkler, D.;  Technische Universität Braunschweig, Institut für Statik, Beethovenstraße 51, 38106 Braunschweig, Germany
Vehre, A.;  Technische Universität Braunschweig, Institut für Statik, Beethovenstraße 51, 38106 Braunschweig, Germany
Langue du document :
Anglais
Titre :
Projection-based reduction of fluid-structure interaction systems using monolithic space-time modes
Date de publication/diffusion :
2009
Titre du périodique :
Computer Methods in Applied Mechanics and Engineering
ISSN :
0045-7825
Volume/Tome :
198
Fascicule/Saison :
47-48
Pagination :
3795-3805
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 18 novembre 2013

Statistiques


Nombre de vues
159 (dont 10 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
9
citations Scopus®
sans auto-citations
6
OpenCitations
 
7
citations OpenAlex
 
12
citations WoS
 
7

Bibliographie


Publications similaires



Contacter ORBilu