Paper published in a book (Scientific congresses, symposiums and conference proceedings)
Non-linear CCA and PCA by Alignment of Local Models
Verbeek, J. J.; Roweis, S. T.; VLASSIS, Nikos
2004In Advances in Neural Information Processing Systems 16
Peer reviewed
 

Files


Full Text
NIPS2003_AA38.ps
Publisher postprint (2.1 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Abstract :
[en] We propose a non-linear Canonical Correlation Analysis (CCA) method which works by coordinating or aligning mixtures of linear models. In the same way that CCA extends the idea of PCA, our work extends recent methods for non-linear dimensionality reduction to the case where multiple embeddings of the same underlying low dimensional coordinates are observed, each lying on a different high dimensional manifold.
Disciplines :
Computer science
Identifiers :
UNILU:UL-ARTICLE-2011-733
Author, co-author :
Verbeek, J. J.
Roweis, S. T.
VLASSIS, Nikos ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Language :
English
Title :
Non-linear CCA and PCA by Alignment of Local Models
Publication date :
2004
Event name :
Advances in Neural Information Processing Systems 16.
Event date :
2004
Main work title :
Advances in Neural Information Processing Systems 16
Publisher :
Morgan Kaufmann Publishers, San Mateo, United States - California
Pages :
297-304
Peer reviewed :
Peer reviewed
Available on ORBilu :
since 17 November 2013

Statistics


Number of views
51 (1 by Unilu)
Number of downloads
8 (0 by Unilu)

Scopus citations®
 
31
Scopus citations®
without self-citations
28

Bibliography


Similar publications



Contact ORBilu