[en] We propose a non-linear Canonical Correlation Analysis (CCA) method which works by coordinating or aligning mixtures of linear models. In the same way that CCA extends the idea of PCA, our work extends recent methods for non-linear dimensionality reduction to the case where multiple embeddings of the same underlying low dimensional coordinates are observed, each lying on a different high dimensional manifold.
Disciplines :
Sciences informatiques
Identifiants :
UNILU:UL-ARTICLE-2011-733
Auteur, co-auteur :
Verbeek, J. J.
Roweis, S. T.
VLASSIS, Nikos ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Langue du document :
Anglais
Titre :
Non-linear CCA and PCA by Alignment of Local Models
Date de publication/diffusion :
2004
Nom de la manifestation :
Advances in Neural Information Processing Systems 16.
Date de la manifestation :
2004
Titre de l'ouvrage principal :
Advances in Neural Information Processing Systems 16
Maison d'édition :
Morgan Kaufmann Publishers, San Mateo, Etats-Unis - Californie
J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, December 2000.
S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, December 2000.
B. Scḧolkopf, A.J. Smola, and K. M̈uller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural Information Processing Systems, volume 14, 2002.
C. Bregler and S.M. Omohundro. Surface learning with applications to lipreading. In Advances in Neural Information Processing Systems, volume 6, 1994.
S.T. Roweis, L.K. Saul, and G.E. Hinton. Global coordination of local linear models. In Advances in Neural Information Processing Systems, volume 14, 2002.
Y.W. Teh and S.T. Roweis. Automatic alignment of local representations. In Advances in Neural Information Processing Systems, volume 15, 2003.
M. Brand. Charting a manifold. In Advances in Neural Information Processing Systems, volume 15, 2003.
C.M. Bishop, M. Svenśen, and C.K.I Williams. GTM: The generative topographic mapping. Neural Computation, 10:215-234, 1998.
T. Kohonen. Self-organizing maps. Springer, 2001.
J.H. Ham, D.D. Lee, and L.K. Saul. Learning high dimensional correspondences from low dimensional manifolds. In ICML'03, workshop on the continuum from labeled to unlabeled data in machine learning and data mining, 2003.
G. Peters, B. Zitova, and C. von der Malsburg. How to measure the pose robustness of object views. Image and Vision Computing, 20(4):249-256, 2002.