No full text
Article (Scientific journals)
Gaussian fields for semi-supervised regression and correspondence learning
Verbeek, Jakob J.; VLASSIS, Nikos
2006In Pattern Recognition, 39 (10), p. 1864-1875
Peer Reviewed verified by ORBi
 

Files


Full Text
No document available.

Send to



Details



Keywords :
Gaussian fields; regression; active learning; model selection
Abstract :
[en] Gaussian fields (GF) have recently received considerable attention for dimension reduction and semi-supervised classification. In this paper we show how the GF framework can be used for semi-supervised regression on high-dimensional data. We propose an active learning strategy based on entropy minimization and a maximum likelihood model selection method. Furthermore, we show how a recent generalization of the LLE algorithm for correspondence learning can be cast into the GF framework, which obviates the need to choose a representation dimensionality.
Disciplines :
Computer science
Identifiers :
UNILU:UL-ARTICLE-2011-717
Author, co-author :
Verbeek, Jakob J.
VLASSIS, Nikos ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Language :
English
Title :
Gaussian fields for semi-supervised regression and correspondence learning
Publication date :
2006
Journal title :
Pattern Recognition
ISSN :
0031-3203
eISSN :
1873-5142
Publisher :
Pergamon Press - An Imprint of Elsevier Science
Volume :
39
Issue :
10
Pages :
1864-1875
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBilu :
since 17 November 2013

Statistics


Number of views
78 (0 by Unilu)
Number of downloads
0 (0 by Unilu)

Scopus citations®
 
30
Scopus citations®
without self-citations
30
OpenCitations
 
16
OpenAlex citations
 
25
WoS citations
 
20

Bibliography


Similar publications



Contact ORBilu