ALLIX, K., BISSYANDE, T. F. D. A., JEROME, Q., KLEIN, J., STATE, R., & LE TRAON, Y. (2014). Empirical assessment of machine learning-based malware detectors for Android: Measuring the Gap between In-the-Lab and In-the-Wild Validation Scenarios. Empirical Software Engineering, 1-29. doi:10.1007/s10664-014-9352-6 Peer Reviewed verified by ORBi |
ALLIX, K., JEROME, Q., BISSYANDE, T. F. D. A., KLEIN, J., STATE, R., & LE TRAON, Y. (2014). A Forensic Analysis of Android Malware -- How is Malware Written and How It Could Be Detected? In Proceedings of the 2014 IEEE 38th Annual Computer Software and Applications Conference (pp. 384--393). Washington, DC, USA, Unknown/unspecified: IEEE Computer Society. doi:10.1109/COMPSAC.2014.61 Peer reviewed |
JEROME, Q., ALLIX, K., STATE, R., & ENGEL, T. (2014). Using opcode-sequences to detect malicious Android applications. In IEEE International Conference on Communications, ICC 2014, Sydney Australia, June 10-14, 2014. Sydney, Australia: IEEE. doi:10.1109/ICC.2014.6883436 Peer reviewed |
ALLIX, K., BISSYANDE, T. F. D. A., JEROME, Q., KLEIN, J., STATE, R., & LE TRAON, Y. (2014). Large-scale Machine Learning-based Malware Detection: Confronting the "10-fold Cross Validation" Scheme with Reality. In Proceedings of the 4th ACM Conference on Data and Application Security and Privacy (pp. 163--166). New York, NY, USA, Unknown/unspecified: ACM. doi:10.1145/2557547.2557587 Peer reviewed |
JEROME, Q., MARCHAL, S., STATE, R., & ENGEL, T. (2013). Advanced Detection Tool for PDF Threats. In Proceedings of the sixth International Workshop on Autonomous and Spontaneous Security, RHUL, Egham, U.K., 12th-13th September 2013. Springer. Peer reviewed |