Profil

JEROME Quentin

Main Referenced Co-authors
STATE, Radu  (5)
ALLIX, Kevin  (4)
BISSYANDE, Tegawendé  (3)
KLEIN, Jacques  (3)
LE TRAON, Yves  (3)
Main Referenced Keywords
machine learning (3); Android (1); android (1); Android Malware (1); Android Security (1);
Main Referenced Unit & Research Centers
ULHPC - University of Luxembourg: High Performance Computing (1)
Main Referenced Disciplines
Computer science (5)

Publications (total 5)

The most downloaded
2896 downloads
ALLIX, K., BISSYANDE, T. F. D. A., JEROME, Q., KLEIN, J., STATE, R., & LE TRAON, Y. (2014). Empirical assessment of machine learning-based malware detectors for Android: Measuring the Gap between In-the-Lab and In-the-Wild Validation Scenarios. Empirical Software Engineering, 1-29. doi:10.1007/s10664-014-9352-6 https://hdl.handle.net/10993/20068

The most cited

122 citations (OpenAlex)

ALLIX, K., BISSYANDE, T. F. D. A., JEROME, Q., KLEIN, J., STATE, R., & LE TRAON, Y. (2014). Empirical assessment of machine learning-based malware detectors for Android: Measuring the Gap between In-the-Lab and In-the-Wild Validation Scenarios. Empirical Software Engineering, 1-29. doi:10.1007/s10664-014-9352-6 https://hdl.handle.net/10993/20068

ALLIX, K., BISSYANDE, T. F. D. A., JEROME, Q., KLEIN, J., STATE, R., & LE TRAON, Y. (2014). Empirical assessment of machine learning-based malware detectors for Android: Measuring the Gap between In-the-Lab and In-the-Wild Validation Scenarios. Empirical Software Engineering, 1-29. doi:10.1007/s10664-014-9352-6
Peer Reviewed verified by ORBi

ALLIX, K., JEROME, Q., BISSYANDE, T. F. D. A., KLEIN, J., STATE, R., & LE TRAON, Y. (2014). A Forensic Analysis of Android Malware -- How is Malware Written and How It Could Be Detected? In Proceedings of the 2014 IEEE 38th Annual Computer Software and Applications Conference (pp. 384--393). Washington, DC, USA, Unknown/unspecified: IEEE Computer Society. doi:10.1109/COMPSAC.2014.61
Peer reviewed

JEROME, Q., ALLIX, K., STATE, R., & ENGEL, T. (2014). Using opcode-sequences to detect malicious Android applications. In IEEE International Conference on Communications, ICC 2014, Sydney Australia, June 10-14, 2014. Sydney, Australia: IEEE. doi:10.1109/ICC.2014.6883436
Peer reviewed

ALLIX, K., BISSYANDE, T. F. D. A., JEROME, Q., KLEIN, J., STATE, R., & LE TRAON, Y. (2014). Large-scale Machine Learning-based Malware Detection: Confronting the "10-fold Cross Validation" Scheme with Reality. In Proceedings of the 4th ACM Conference on Data and Application Security and Privacy (pp. 163--166). New York, NY, USA, Unknown/unspecified: ACM. doi:10.1145/2557547.2557587
Peer reviewed

JEROME, Q., MARCHAL, S., STATE, R., & ENGEL, T. (2013). Advanced Detection Tool for PDF Threats. In Proceedings of the sixth International Workshop on Autonomous and Spontaneous Security, RHUL, Egham, U.K., 12th-13th September 2013. Springer.
Peer reviewed

Contact ORBilu