Pas de texte intégral
Article (Périodiques scientifiques)
Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling.
Conzelmann, H.; Saez-Rodriguez, J.; SAUTER, Thomas et al.
2004In Systems biology, 1 (1), p. 159-69
Peer reviewed
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Mots-clés :
Algorithms; Animals; Computer Simulation; Epidermal Growth Factor/metabolism; Humans; Models, Biological; Receptor, Epidermal Growth Factor/metabolism; Signal Transduction/physiology
Résumé :
[en] Biological systems and, in particular, cellular signal transduction pathways are characterised by their high complexity. Mathematical models describing these processes might be of great help to gain qualitative and, most importantly, quantitative knowledge about such complex systems. However, a detailed mathematical description of these systems leads to nearly unmanageably large models, especially when combining models of different signalling pathways to study cross-talk phenomena. Therefore, simplification of models becomes very important. Different methods are available for model reduction of biological models. Importantly, most of the common model reduction methods cannot be applied to cellular signal transduction pathways. Using as an example the epidermal growth factor (EGF) signalling pathway, we discuss how quantitative methods like system analysis and simulation studies can help to suitably reduce models and additionally give new insights into the signal transmission and processing of the cell.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Conzelmann, H.
Saez-Rodriguez, J.
SAUTER, Thomas ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
Bullinger, E.
Allgower, F.
Gilles, E. D.
Langue du document :
Anglais
Titre :
Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling.
Date de publication/diffusion :
2004
Titre du périodique :
Systems biology
ISSN :
1741-2471
Volume/Tome :
1
Fascicule/Saison :
1
Pagination :
159-69
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 24 avril 2013

Statistiques


Nombre de vues
205 (dont 7 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
54
citations Scopus®
sans auto-citations
48
OpenCitations
 
51
citations OpenAlex
 
72
citations WoS
 
49

Bibliographie


Publications similaires



Contacter ORBilu