Breakings; Energy spectrum; Form factors; Frequency filters; Quantum channel; Quantum system; Self averaging; Time averages; Two-point; Unitarity; Atomic and Molecular Physics, and Optics; Quantum Physics; Physics - Statistical Mechanics; High Energy Physics - Theory; Mathematical Physics; Mathematics - Mathematical Physics
Abstract :
[en] The complex Fourier transform of the two-point correlator of the energy spectrum of a quantum system is known as the spectral form factor (SFF). It constitutes an essential diagnostic tool for phases of matter and quantum chaos. In black hole physics, it describes the survival probability (fidelity) of a thermofield double state under unitary time evolution. However, detailed properties of the SFF of isolated quantum systems with generic spectra are smeared out by large temporal fluctuations, whose minimization requires disorder or time averages. This requirement holds for any system size, that is, the SFF is non-self-averaging. Exploiting the fidelity-based interpretation of this quantity, we prove that using filters and disorder and time averages of the SFF involve unitarity breaking, i.e., open quantum dynamics described by a quantum channel that suppresses quantum noise. Specifically, averaging over Hamiltonian ensembles, time averaging, and frequency filters can be described by the class of mixed-unitary quantum channels in which information loss can be recovered. Frequency filters are associated with a time-continuous master equation generalizing energy dephasing. We also discuss the use of eigenvalue filters. They are linked to non-Hermitian Hamiltonian evolution without quantum jumps, whose long-time behavior is described by a Hamiltonian deformation. We show that frequency and energy filters make the SFF self-averaging at long times.
Disciplines :
Physics
Author, co-author :
Beau, Mathieu ; Department of Physics, University of Massachusetts, Boston, United States
Santos, Lea F.; Department of Physics, University of Connecticut, Storrs, United States
DEL CAMPO ECHEVARRIA, Adolfo ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
MATSOUKAS, Stylianos Apollonas ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
yes
Language :
English
Title :
Unitarity breaking in self-averaging spectral form factors
Horizon 2020 Framework Programme National Science Foundation
Funding text :
It is a pleasure to acknowledge discussions with Federico Balducci, Aurelia Chenu, Julien Cornelius, Íñigo L. Egusquiza, Pablo Martínez-Azcona, Federico Roccati, Avadh Saxena, and Zhenyu Xu. This project was funded within the QuantERA II Programme that has received funding from the European Union's Horizon 2020 research and innovation programme under Grant No. 16434093. For open access and in fulfillment of the obligations arising from the grant agreement, the authors have applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission. L.F.S. was supported by a grant from the United States National Science Foundation (NSF, Grant No. DMR-1936006).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
L. Leviandier, M. Lombardi, R. Jost, and J. P. Pique, Fourier transform: A tool to measure statistical level properties in very complex spectra, Phys. Rev. Lett. 56, 2449 (1986) 0031-9007 10.1103/PhysRevLett.56.2449.
J. Wilkie and P. Brumer, Time-dependent manifestations of quantum chaos, Phys. Rev. Lett. 67, 1185 (1991) 0031-9007 10.1103/PhysRevLett.67.1185.
Y. Alhassid and R. D. Levine, Spectral autocorrelation function in the statistical theory of energy levels, Phys. Rev. A 46, 4650 (1992) 1050-2947 10.1103/PhysRevA.46.4650.
Y. Alhassid and N. Whelan, Onset of chaos and its signature in the spectral autocorrelation function, Phys. Rev. Lett. 70, 572 (1993) 0031-9007 10.1103/PhysRevLett.70.572.
F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 2010).
M. L. Mehta, Random Matrices, 3rd ed. (Elsevier, San Diego, 2004).
K. Papadodimas and S. Raju, Local operators in the eternal black hole, Phys. Rev. Lett. 115, 211601 (2015) 0031-9007 10.1103/PhysRevLett.115.211601.
A. del Campo, J. Molina-Vilaplana, and J. Sonner, Scrambling the spectral form factor: Unitarity constraints and exact results, Phys. Rev. D 95, 126008 (2017) 2470-0010 10.1103/PhysRevD.95.126008.
A. del Campo, J. Molina-Vilaplana, L. F. Santos, and J. Sonner, Decay of a thermofield-double state in chaotic quantum systems, Eur. Phys. J. Spec. Top. 227, 247 (2018) 1951-6355 10.1140/epjst/e2018-00083-5.
Z. Xu, A. Chenu, T. Prosen, and A. del Campo, Thermofield dynamics: Quantum chaos versus decoherence, Phys. Rev. B 103, 064309 (2021) 2469-9950 10.1103/PhysRevB.103.064309.
H. Umezawa, H. Matsumoto, and M. Tachiki, ThermoField Dynamics and Condensed States (North-Holland, Amsterdam, 1982).
W. Israel, Thermo-field dynamics of black holes, Phys. Lett. A 57, 107 (1976) 0375-9601 10.1016/0375-9601(76)90178-X.
J. Maldacena, Eternal black holes in anti-de Sitter, J. High Energy Phys. 04 (2003) 021 1029-8479 10.1088/1126-6708/2003/04/021.
J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortschr. Phys. 61, 781 (2013) 0015-8208 10.1002/prop.201300020.
J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, J. High Energy Phys. 08 (2016) 106 1029-8479 10.1007/JHEP08(2016)106.
J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka, Black holes and random matrices, J. High Energy Phys. 05 (2017) 118 1029-8479 10.1007/JHEP05(2017)118.
E. Dyer and G. Gur-Ari, 2D CFT partition functions at late times, J. High Energy Phys. 8 (2017) 075 1029-8479 10.1007/JHEP08(2017)075.
H. Gharibyan, M. Hanada, S. H. Shenker, and M. Tezuka, Onset of random matrix behavior in scrambling systems, J. High Energy Phys. 07 (2018) 124 1029-8479 10.1007/JHEP07(2018)124.
V. Balasubramanian, P. Caputa, J. M. Magan, and Q. Wu, Quantum chaos and the complexity of spread of states, Phys. Rev. D 106, 046007 (2022) 2470-0010 10.1103/PhysRevD.106.046007.
J. Erdmenger, S.-K. Jian, and Z.-Y. Xian, Universal chaotic dynamics from Krylov space, J. High Energy Phys. 08 (2023) 176 1029-8479 10.1007/JHEP08(2023)176.
R. E. Prange, The spectral form factor is not self-averaging, Phys. Rev. Lett. 78, 2280 (1997) 0031-9007 10.1103/PhysRevLett.78.2280.
P. Saad, S. H. Shenker, and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [hep-th].
J. Barbón and E. Rabinovici, Geometry and quantum noise, Fortschr. Phys. 62, 626 (2014) 0015-8208 10.1002/prop.201400044.
C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed., edited by H. Haken (Springer, New York, 2000).
N. Argaman, Y. Imry, and U. Smilansky, Semiclassical analysis of spectral correlations in mesoscopic systems, Phys. Rev. B 47, 4440 (1993) 0163-1829 10.1103/PhysRevB.47.4440.
N. Argaman, F.-M. Dittes, E. Doron, J. P. Keating, A. Y. Kitaev, M. Sieber, and U. Smilansky, Correlations in the actions of periodic orbits derived from quantum chaos, Phys. Rev. Lett. 71, 4326 (1993) 0031-9007 10.1103/PhysRevLett.71.4326.
B. Eckhardt and J. Main, Semiclassical form factor of matrix element fluctuations, Phys. Rev. Lett. 75, 2300 (1995) 0031-9007 10.1103/PhysRevLett.75.2300.
M. Schiulaz, E. J. Torres-Herrera, F. Pérez-Bernal, and L. F. Santos, Self-averaging in many-body quantum systems out of equilibrium: Chaotic systems, Phys. Rev. B 101, 174312 (2020) 2469-9950 10.1103/PhysRevB.101.174312.
E. J. Torres-Herrera, G. De Tomasi, M. Schiulaz, F. Pérez-Bernal, and L. F. Santos, Self-averaging in many-body quantum systems out of equilibrium: Approach to the localized phase, Phys. Rev. B 102, 094310 (2020) 2469-9950 10.1103/PhysRevB.102.094310.
E. J. Torres-Herrera, I. Vallejo-Fabila, A. J. Martínez-Mendoza, and L. F. Santos, Self-averaging in many-body quantum systems out of equilibrium: Time dependence of distributions, Phys. Rev. E 102, 062126 (2020) 2470-0045 10.1103/PhysRevE.102.062126.
G. Bunin, L. Foini, and J. Kurchan, Fisher zeroes and the fluctuations of the spectral form factor of chaotic systems, arXiv:2207.02473 [cond-mat.stat-mech].
A. D. Hammerich, J. G. Muga, and R. Kosloff, Time-dependent quantum-mechanical approaches to the continuous spectrum: Scattering resonances in a finite box, Isr. J. Chem. 29, 461 (1989) 0021-2148 10.1002/ijch.198900057.
M. R. Wall and D. Neuhauser, Extraction, through filter-diagonalization, of general quantum eigenvalues or classical normal mode frequencies from a small number of residues or a short-time segment of a signal. I. Theory and application to a quantum-dynamics model, J. Chem. Phys. 102, 8011 (1995) 0021-9606 10.1063/1.468999.
V. A. Mandelshtam and H. S. Taylor, A low-storage filter diagonalization method for quantum eigenenergy calculation or for spectral analysis of time signals, J. Chem. Phys. 106, 5085 (1997) 0021-9606 10.1063/1.473554.
A. Tameshtit and J. E. Sipe, Survival probability and chaos in an open quantum system, Phys. Rev. A 45, 8280 (1992) 1050-2947 10.1103/PhysRevA.45.8280.
J. Cornelius, Z. Xu, A. Saxena, A. Chenu, and A. del Campo, Spectral filtering induced by non-Hermitian evolution with balanced gain and loss: Enhancing quantum chaos, Phys. Rev. Lett. 128, 190402 (2022) 0031-9007 10.1103/PhysRevLett.128.190402.
A. S. Matsoukas-Roubeas, F. Roccati, J. Cornelius, Z. Xu, A. Chenu, and A. del Campo, Non-Hermitian Hamiltonian deformations in quantum mechanics, J. High Energy Phys. 01 (2023) 060 1029-8479 10.1007/JHEP01(2023)060.
A. S. Matsoukas-Roubeas, T. Prosen, and A. del Campo, Quantum chaos and coherence: Random parametric quantum channels, arXiv:2305.19326 [quant-ph].
Y.-N. Zhou, T.-G. Zhou, and P. Zhang, Universal properties of the spectral form factor in open quantum systems, arXiv:2303.14352 [cond-mat.stat-mech].
J. Li, T. Prosen, and A. Chan, Spectral statistics of non-Hermitian matrices and dissipative quantum chaos, Phys. Rev. Lett. 127, 170602 (2021) 0031-9007 10.1103/PhysRevLett.127.170602.
A. Vikram and V. Galitski, Exact universal bounds on quantum dynamics and fast scrambling, arXiv:2212.14021 [quant-ph].
H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002).
J. Watrous, The Theory of Quantum Information (Cambridge University Press, Cambridge, 2018).
P. Forrester, Log-Gases and Random Matrices (LMS-34), London Mathematical Society Monographs (Princeton University Press, Princeton, 2010).
A. del Campo and T. Takayanagi, Decoherence in conformal field theory, J. High Energy Phys. 02 (2020) 170 1029-8479 10.1007/JHEP02(2020)170.
N. Gisin, Quantum measurements and stochastic processes, Phys. Rev. Lett. 52, 1657 (1984) 0031-9007 10.1103/PhysRevLett.52.1657.
S. L. Adler, Weisskopf-Wigner decay theory for the energy-driven stochastic Schrödinger equation, Phys. Rev. D 67, 025007 (2003) 0556-2821 10.1103/PhysRevD.67.025007.
G. J. Milburn, Intrinsic decoherence in quantum mechanics, Phys. Rev. A 44, 5401 (1991) 1050-2947 10.1103/PhysRevA.44.5401.
A. Bassi and G. Ghirardi, Dynamical reduction models, Phys. Rep. 379, 257 (2003) 0370-1573 10.1016/S0370-1573(03)00103-0.
A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, Models of wave-function collapse, underlying theories, and experimental tests, Rev. Mod. Phys. 85, 471 (2013) 0034-6861 10.1103/RevModPhys.85.471.
I. L. Egusquiza, L. J. Garay, and J. M. Raya, Quantum evolution according to real clocks, Phys. Rev. A 59, 3236 (1999) 1050-2947 10.1103/PhysRevA.59.3236.
I. L. Egusquiza and L. J. Garay, Real clocks and the Zeno effect, Phys. Rev. A 68, 022104 (2003) 1050-2947 10.1103/PhysRevA.68.022104.
Z. Xu, L. P. García-Pintos, A. Chenu, and A. del Campo, Extreme decoherence and quantum chaos, Phys. Rev. Lett. 122, 014103 (2019) 0031-9007 10.1103/PhysRevLett.122.014103.
H. Verlinde, ER (Equation presented) EPR revisited: On the entropy of an Einstein-Rosen bridge, arXiv:2003.13117 [hep-th].
H. Verlinde, Deconstructing the wormhole: Factorization, entanglement and decoherence, arXiv:2105.02142 [hep-th].
K. Goto, Y. Kusuki, K. Tamaoka, and T. Ugajin, Product of random states and spatial (half-)wormholes, J. High Energy Phys. 10 (2021) 205 1029-8479 10.1007/JHEP10(2021)205.
H. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields, Theoretical and Mathematical Physics (Springer Berlin Heidelberg, Berlin, 2009).
D. C. Brody and E.-M. Graefe, Mixed-state evolution in the presence of gain and loss, Phys. Rev. Lett. 109, 230405 (2012) 0031-9007 10.1103/PhysRevLett.109.230405.
Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv. Phys. 69, 249 (2020) 0001-8732 10.1080/00018732.2021.1876991.
Y. Liao and V. Galitski, Emergence of many-body quantum chaos via spontaneous breaking of unitarity, Phys. Rev. B 105, L140202 (2022) 2469-9950 10.1103/PhysRevB.105.L140202.
D. Lidar, A. Shabani, and R. Alicki, Conditions for strictly purity-decreasing quantum Markovian dynamics, Chem. Phys. 322, 82 (2006) 0301-0104 10.1016/j.chemphys.2005.06.038.
M. Gregoratti and R. F. Werner, Quantum lost and found, J. Mod. Opt. 50, 915 (2003) 0950-0340 10.1080/09500340308234541.
P. Bocchieri and A. Loinger, Quantum recurrence theorem, Phys. Rev. 107, 337 (1957) 0031-899X 10.1103/PhysRev.107.337.
L. S. Schulman, Note on the quantum recurrence theorem, Phys. Rev. A 18, 2379 (1978) 0556-2791 10.1103/PhysRevA.18.2379.
D. J. Gross, J. Kruthoff, A. Rolph, and E. Shaghoulian, (Equation presented) in (Equation presented) and quantum mechanics, Phys. Rev. D 101, 026011 (2020) 2470-0010 10.1103/PhysRevD.101.026011.
D. J. Gross, J. Kruthoff, A. Rolph, and E. Shaghoulian, Hamiltonian deformations in quantum mechanics, (Equation presented), and the SYK model, Phys. Rev. D 102, 046019 (2020) 2470-0010 10.1103/PhysRevD.102.046019.
L. P. García-Pintos, A. Hamma, and A. del Campo, Fluctuations in extractable work bound the charging power of quantum batteries, Phys. Rev. Lett. 125, 040601 (2020) 0031-9007 10.1103/PhysRevLett.125.040601.
D. C. Brody, Biorthogonal quantum mechanics, J. Phys. A: Math. Theor. 47, 035305 (2014) 1751-8113 10.1088/1751-8113/47/3/035305.
J. A. Gyamfi, Fundamentals of quantum mechanics in Liouville space, Eur. J. Phys. 41, 063002 (2020) 0143-0807 10.1088/1361-6404/ab9fdd.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.