Article (Périodiques scientifiques)
Towards a Scalable and Energy-Efficient Framework for Industrial Cloud-Edge-IoT Continuum
AOUEDI, Ons; Piamrat, Kandaraj
2024In IEEE Internet of Things Journal
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Edge_Cloud_FL_SNN_SI (1).pdf
Preprint Auteur (1.7 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Federated Learning; Hierarchical Federated Learning; Spiking Neural Network; Internet of Things; Industrial Internet of Things
Résumé :
[en] The Cloud-Edge-IoT (CEI) continuum integrates edge computing, cloud computing, and the Internet of Things (IoT), fostering rapid Industrial Internet of Things (IIoT) development. Despite its potential, it faces significant challenges, including robustness issues, communication-induced latency, and inconsistent model convergence due to system and data heterogeneity. Machine Learning (ML), a vital technology in this domain, further complicates privacy and overhead concerns. To mitigate these issues, Federated Learning (FL) appeared as a promising solution where the FL setting allows the devices to collaboratively train a model while keeping training data local. However, in practice, it suffers from several issues such as robustness (due to a single point of failure), latency (it still requires a significant amount of communication resources), and model convergence (due to the heterogeneity of system and statistics). To cope with these issues, we propose to integrate Hierarchical FL (HFL) and Spiking Neural Networks (SNN) into the framework for building a scalable and energy-efficient solution for the industrial CEI continuum. We present an in-depth overview, discussions on emerging applications, and a performance evaluation via a case study in IoT image classification. We also identify and explore open research topics crucial for the future realization of such a continuum.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
AOUEDI, Ons  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Piamrat, Kandaraj;  Nantes Université [FR]
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Towards a Scalable and Energy-Efficient Framework for Industrial Cloud-Edge-IoT Continuum
Date de publication/diffusion :
janvier 2024
Titre du périodique :
IEEE Internet of Things Journal
eISSN :
2327-4662
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Sustainable Development
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 12 janvier 2024

Statistiques


Nombre de vues
285 (dont 44 Unilu)
Nombre de téléchargements
442 (dont 15 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu