Article (Périodiques scientifiques)
Short-Term Arrival Delay Time Prediction in Freight Rail Operations Using Data-Driven Models
Pineda-Jaramillo, Juan; BIGI, Federico; Bosi, Tommaso et al.
2023In IEEE Access, 11, p. 46966 - 46978
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
manuscript_R2_preprint.pdf
Preprint Auteur (3.19 MB) Licence Creative Commons - Attribution
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Data-driven models; delays forecasting; freight transport; gradient boosting; rail operation delays; Biological system modeling; Data-driven model; Delay; Delay forecasting; Freight transport; Gradient boosting; Predictive models; Rail operation delay; Rail operations; Rail transportation; Computer Science (all); Materials Science (all); Engineering (all); Delays; Data models; Analytical models; Freight handling; INDEX TERMS; General Engineering; General Materials Science; General Computer Science; Electrical and Electronic Engineering
Résumé :
[en] Despite rail's growing popularity as a mode of freight transportation due to its role in intermodal transportation and numerous economic and environmental benefits, optimizing all aspects of rail infrastructure use remains a significant challenge. To address this issue, various methods for developing train disruption prediction models have been used. However, these models continue to struggle with accurately predicting short-term arrival delay times, as well as identifying the causes of delays and the expected impact on operations. The lack of information available to operators makes it difficult for them to effectively mitigate the effects of disruptions. The goal of this study is to investigate a set of data-driven models for the short-term prediction of arrival delay time using data from the National Railway Company of Luxembourg of freight rail operations between Bettembourg (Luxembourg) and other nine terminal stations across the EU, and then investigate the effects of the features associated with the arrival delay time. For our dataset, the lightGBM model outperformed other models in predicting the arrival delay time in freight rail operations, with departure delay time, trip distance, and train composition appearing to be the most influential features in predicting the arrival delay time in the short-term. The National Railway Company of Luxembourg can use the short-term prediction model developed in this study as a decision-support system. For example, knowing a train's arrival delay time allows you to estimate future operational time, providing more support to reduce disruptions and subsequent operational delays via a simple web service.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Pineda-Jaramillo, Juan ;  University of Luxembourg, Department of Engineering, Esch-sur-Alzette, Luxembourg
BIGI, Federico  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Bosi, Tommaso ;  Roma Tre University, Department of Civil, Computer Science and Aeronautical Technologies Engineering, Rome, Italy
VITI, Francesco  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
D'ariano, Andrea ;  Roma Tre University, Department of Civil, Computer Science and Aeronautical Technologies Engineering, Rome, Italy
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Short-Term Arrival Delay Time Prediction in Freight Rail Operations Using Data-Driven Models
Date de publication/diffusion :
2023
Titre du périodique :
IEEE Access
ISSN :
2169-3536
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.
Volume/Tome :
11
Pagination :
46966 - 46978
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
R-AGR-3881 - BRIDGES 2020/14767177-ANTOINE/CFL Cont (01/01/2021 - 31/12/2023) - CONNORS Richard
Intitulé du projet de recherche :
R-AGR-3881 - BRIDGES 2020/14767177-ANTOINE/CFL Cont (01/01/2021 - 31/12/2023) - CONNORS Richard
Organisme subsidiant :
Fonds National de la Recherche Luxembourg
N° du Fonds :
14767177
Subventionnement (détails) :
This work was supported by the Luxembourg National Research Fund (FNR) through the Project
Disponible sur ORBilu :
depuis le 26 novembre 2023

Statistiques


Nombre de vues
133 (dont 2 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
13
citations Scopus®
sans auto-citations
11
OpenCitations
 
1
citations OpenAlex
 
12
citations WoS
 
7

Bibliographie


Publications similaires



Contacter ORBilu