Conditioning to stay positive; local time; Lévy processes; occupation time; optimal estimation; self-similarity; supremum; weak limit theorems; Statistics and Probability; Statistics, Probability and Uncertainty
Abstract :
[en] In this paper we present new theoretical results on optimal estimation of certain random quantities based on high frequency observations of a Lévy process. More specifically, we investigate the asymptotic theory for the conditional mean and conditional median estimators of the supremum/infimum of a linear Brownian motion and a strictly stable Lévy process. Another contribution of our article is the conditional mean estimation of the local time and the occupation time of a linear Brownian motion. We demonstrate that the new estimators are considerably more efficient compared to the classical estimators studied in e.g. [6, 14, 29, 30, 38]. Furthermore, we discuss pre-estimation of the parameters of the underly-ing models, which is required for practical implementation of the proposed statistics.
Disciplines :
Mathematics
Author, co-author :
Ivanovs, Jevgenijs; Department of Mathematics, Aarhus University, Denmark
PODOLSKIJ, Mark ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
External co-authors :
yes
Language :
English
Title :
Optimal estimation of the supremum and occupation times of a self-similar Lévy process∗
Publication date :
2022
Journal title :
Electronic Journal of Statistics
eISSN :
1935-7524
Publisher :
Institute of Mathematical Statistics
Volume :
16
Issue :
1
Pages :
892 - 934
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 815703 - STAMFORD - Statistical Methods For High Dimensional Diffusions
Name of the research project :
Statistical Methods For High Dimensional Diffusions
Funders :
ERC - European Research Council Union Européenne
Funding number :
815703
Funding text :
∗The financial support of ERC Consolidator Grant 815703 “STAMFORD: Statistical Methods for High Dimensional Diffusions” and Sapere Aude Starting Grant 8049-00021B “Distributional Robustness in Assessment of Extreme Risk” is gratefully acknowledged.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Y. Aït-Sahalia and J. Jacod. High-frequency financial econometrics. Prince-ton University Press, 2014.
D. J. Aldous and G. K. Eagleson. On mixing and stability of limit theorems. Ann. Probability, 6(2):325–331, 1978. MR0517416
R. Altmeyer. Central limit theorems for discretized occupation time func-tionals. Preprint arXiv:1909.00474, 2019.
R. Altmeyer. Estimating occupation time functionals. Preprint arXiv:1706.03418, 2019.
R. Altmeyer and J. Chorowski. Estimation error for occupation time functionals of stationary Markov processes. Stochastic Process. Appl., 128(6):1830–1848, 2018. MR3797645
S. Asmussen, P. Glynn, and J. Pitman. Discretization error in simulation of one-dimensional reflecting Brownian motion. Ann. in Appl. Probab., pages 875–896, 1995. MR1384357
S. Asmussen and J. Ivanovs. Discretization error for a two-sided reflected Lévy process. Queueing Syst., 89(1-2):199–212, 2018. MR3803961
A. Banerjee, X. Guo, and H. Wang. On the optimality of conditional expec-tation as a Bregman predictor. IEEE Trans. Inform. Theory, 51(7):2664– 2669, 2005. MR2246384
J. Bertoin. Splitting at the infimum and excursions in half-lines for random walks and Lévy processes. Stochastic Process. Appl., 47(1):17–35, 1993. MR1232850
J. Bertoin. Lévy processes, volume 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996. MR1406564
P. Billingsley. Convergence of probability measures. John Wiley & Sons, 1999. 2nd edition. MR1700749
N. H. Bingham. Maxima of sums of random variables and suprema of stable processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 26:273–296, 1973. MR0415780
K. Bisewski and J. Ivanovs. Zooming-in on a Lévy process: Failure to ob-serve threshold exceedance over a dense grid. Preprint arXiv:1904.06162, 2019. MR4161123
A. N. Borodin. On the character of convergence to Brownian local time. I, II. Probab. Theory Relat. Fields, 72(2):231–250, 251–277, 1986. MR0836277
A. N. Borodin and P. Salminen. Handbook of Brownian motion—facts and formulae. Probability and its Applications. Birkhäuser Verlag, Basel, second edition, 2002. MR1912205
M. E. Caballero and L. Chaumont. Conditioned stable Lévy processes and the Lamperti representation. Journal of Applied Probability, 43(4):967–983, 2006. MR2274630
J. G. Cázares, A. Mijatović, and G. U. Bravo. Geometrically convergent simulation of the extrema of Lévy processes. Preprint arXiv:1810.11039, 2018. MR4032169
L. Chaumont. On the law of the supremum of Lévy processes. Ann. Probab., 41(3A):1191–1217, 2013. MR3098676
L. Chaumont and R. A. Doney. On Lévy processes conditioned to stay positive. Electron. J. Probab., 10(28):948–961, 2005. MR2164035
L. Chaumont and J. C. Pardo. The lower envelope of positive self-similar Markov processes. Electron. J. Probab., 11:no. 49, 1321–1341, 2006. MR2268546
E. Clément, S. Delattre, and A. Gloter. An infinite dimensional convolu-tion theorem with applications to the efficient estimation of the integrated volatility. Stochastic Process. Appl., 123(7):2500–2521, 2013. MR3054534
E. Clément, S. Delattre, and A. Gloter. Asymptotic lower bounds in estimating jumps. Bernoulli, 20(3):1059–1096, 2014. MR3217438
R. A. Doney and M. S. Savov. The asymptotic behavior of densities related to the supremum of a stable process. Ann. Probab., 38(1):316–326, 2010. MR2599201
D. Florens-Zmirou. On estimating the diffusion coefficient from discrete observations. J. Appl. Probab., 30(4):790–804, 1993. MR1242012
S. Fourati. Inversion de l’espace et du temps des processus de Lévy stables. Probab. Theory Related Fields, 135(2):201–215, 2006. MR2218871
T. Gneiting. Making and evaluating point forecasts. J. Amer. Statist. As-soc., 106(494):746–762, 2011. MR2847988
J. I. González Cázares, A. Mijatović, and G. U. Bravo. Exact simulation of the extrema of stable processes. Adv. in Appl. Probab., 51(4):967–993, 2019. MR4032169
Y. Hu and C. Lee. Drift parameter estimation for a reflected fractional Brownian motion based on its local time. J. Appl. Probab., 50(2):592–597, 2013. MR3102502
J. Ivanovs. Zooming in on a Lévy process at its supremum. The Annals of Applied Probability, 28(2):912–940, 2017. MR3784492
J. Jacod. Rates of convergence to the local time of a diffusion. Annales de l’I.H.P. (B), 34(4):505–544, 1998. MR1632849
J. Jacod and P. Protter. Discretization of processes, volume 67 of Stochastic Modelling and Applied Probability. Springer, Heidelberg, 2012. MR2859096
J. Jacod and A. N. Shiryaev. Limit theorems for stochastic processes, volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamen-tal Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1987. MR0959133
P. Kosulajeff. Sur la répartition de la partie fractionnaire d’une variable. Math. Sbornik, 2(5):1017–1019, 1937.
A. Lejay. Estimation of the bias parameter of the skew random walk and application to the skew Brownian motion. Stat. Inference Stoch. Process., 21(3):539–551, 2018. MR3846991
H. Masuda. Parametric estimation of Lévy processes. In Lévy Matters IV, pages 179–286. Springer, 2015. MR3364258
Z. Michna. Explicit formula for the supremum distribution of a spectrally negative stable process. Electron. Commun. Probab., 18:no. 10, 6, 2013. MR3033593
M. Motoo. Proof of the iterated logarithm through diffusion equation. Ann. Inst. Statist. Math., 10:21–28, 1959. MR0097866
H.-L. Ngo and S. Ogawa. On the discrete approximation of occupation time of diffusion processes. Electron. J. Stat., 5:1374–1393, 2011. MR2842909
A. Rényi. On stable sequences of events. Sankhyā Ser. A, 25:293 302, 1963. MR0170385
S. I. Resnick. Extreme values, regular variation and point processes. Springer Series in Operations Research and Financial Engineering. Springer, New York, 2008. Reprint of the 1987 original. MR2364939
K.-I. Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2013. MR3185174
L. A. Shepp. The joint density of the maximum and its location for a Wiener process with drift. J. Appl. Probab., 16(2):423–427, 1979. MR0531776
V. M. Zolotarev. One-dimensional stable distributions, volume 65 of Trans-lations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1986. Translated from the Russian by H. H. McFaden, Translation edited by Ben Silver. MR0854867