Article (Périodiques scientifiques)
A Comprehensive Study of Machine Learning Techniques for Log-Based Anomaly Detection
Ali, Shan; Boufaied, Chaima; BIANCULLI, Domenico et al.
2025In Empirical Software Engineering
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
emse2025.pdf
Postprint Auteur (1.27 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Science - Software Engineering
Résumé :
[en] The growth of systems complexity increases the need of automated techniques dedicated to different log analysis tasks such as Log-based Anomaly Detection (LAD). The latter has been widely addressed in the literature, mostly by means of different deep learning techniques. Nevertheless, the focus on deep learning techniques results in less attention being paid to traditional Machine Learning (ML) techniques, which may perform well in many cases, depending on the context and the used datasets. Further, the evaluation of different ML techniques is mostly based on the assessment of their detection accuracy. However, this is is not enough to decide whether or not a specific ML technique is suitable to address the LAD problem. Other aspects to consider include the training and prediction time as well as the sensitivity to hyperparameter tuning. In this paper, we present a comprehensive empirical study, in which we evaluate different supervised and semi-supervised, traditional and deep ML techniques w.r.t. four evaluation criteria: detection accuracy, time performance, sensitivity of detection accuracy as well as time performance to hyperparameter tuning. The experimental results show that supervised traditional and deep ML techniques perform very closely in terms of their detection accuracy and prediction time. Moreover, the overall evaluation of the sensitivity of the detection accuracy of the different ML techniques to hyperparameter tuning shows that supervised traditional ML techniques are less sensitive to hyperparameter tuning than deep learning techniques. Further, semi-supervised techniques yield significantly worse detection accuracy than supervised techniques.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SVV - Software Verification and Validation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Ali, Shan
Boufaied, Chaima
BIANCULLI, Domenico  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Branco, Paula
Briand, Lionel
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A Comprehensive Study of Machine Learning Techniques for Log-Based Anomaly Detection
Date de publication/diffusion :
23 juin 2025
Titre du périodique :
Empirical Software Engineering
ISSN :
1382-3256
eISSN :
1573-7616
Maison d'édition :
Kluwer Academic Publishers, Pays-Bas
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR17373407 - LOGODOR - Automated Log Smell Detection And Removal, 2022 (01/09/2023-31/08/2026) - Domenico Bianculli
Intitulé du projet de recherche :
LOGODOR - Automated Log Smell Detection and Removal
Organisme subsidiant :
FNR - Luxembourg National Research Fund
N° du Fonds :
C22/IS/17373407/LOGODOR
Subventionnement (détails) :
This work was supported by the Natural Sciences and Research Council of Canada (NSERC) Discov- ery Grant program, the Canada Research Chairs (CRC) program, the Mitacs Accelerate program, the Ontario Graduate Scholarship (OGS) program, and the Luxembourg National Research Fund (FNR), grant reference C22/IS/17373407/LOGODOR; Lionel Briand was partly funded by the Research Ireland grant 13/RC/2094-2. For the purpose of open access, and in fulfillment of the obligations arising from the grant agreement, the authors have applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission.
Disponible sur ORBilu :
depuis le 22 novembre 2023

Statistiques


Nombre de vues
259 (dont 24 Unilu)
Nombre de téléchargements
165 (dont 10 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
OpenCitations
 
0
citations OpenAlex
 
1

Bibliographie


Publications similaires



Contacter ORBilu