Thèse de doctorat (Mémoires et thèses)
Artificial Intelligence-enabled Automation for Compliance Checking against GDPR
AMARAL CEJAS, Orlando
2023
 

Documents


Texte intégral
Artificial Intelligence-enabled Automation for Compliance Checking against GDPR.pdf
Postprint Auteur (3.85 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
The General Data Protection Regulation; Regulatory Compliance; Legal Compliance; Requirements Engineering; Privacy Policies; Data Processing Agreements; Artificial Intelligence; Machine Learning; Natural Language Processing
Résumé :
[en] Requirements engineering (RE) is concerned with eliciting legal requirements from applicable regulations to enable developing legally compliant software. Current software systems rely heavily on data, some of which can be confidential, personal, or sensitive. To address the growing concerns about data protection and privacy, the general data protection regulation (GDPR) has been introduced in the European Union (EU). Organizations, whether based in the EU or not, must comply with GDPR as long as they collect or process personal data of EU residents. Breaching GDPR can be charged with large fines reaching up to up to billions of euros. Privacy policies (PPs) and data processing agreements (DPAs) are documents regulated by GDPR to ensure, among other things, secure collection and processing of personal data. Such regulated documents can be used to elicit legal requirements that are inline with the organizations’ data protection policies. As a prerequisite to elicit a complete set of legal requirements, however, these documents must be compliant with GDPR. Checking the compliance of regulated documents entirely manually is a laborious and error-prone task. As we elaborate below, this dissertation investigates utilizing artificial intelligence (AI) technologies to provide automated support for compliance checking against GDPR. • AI-enabled Automation for Compliance Checking of PPs: PPs are technical documents stating the multiple privacy-related requirements that a system should satisfy in order to help individuals make informed decisions about sharing their personal data. We devise an automated solution that leverages natural language processing (NLP) and machine learning (ML), two sub-fields of AI, for checking the compliance of PPs against the applicable provisions in GDPR. Specifically, we create a comprehensive conceptual model capturing all information types pertinent to PPs and we further define a set of compliance criteria for the automated compliance checking of PPs. • NLP-based Automation for Compliance Checking of DPAs: DPAs are legally binding agreements between different organizations involved in the collection and processing of personal data to ensure that personal data remains protected. Using NLP semantic analysis technologies, we develop an automated solution that checks at phrasal-level the compliance of DPAs against GDPR. Our solution is able to provide not only a compliance assessment, but also detailed recommendations about avoiding GDPR violations. • ML-enabled Automation for Compliance Checking of DPAs: To understand how different representations of GDPR requirements and different enabling technologies fare against one another, we develop an automated solution that utilizes a combination of conceptual modeling and ML. We further empirically compare the resulting solution with our previously proposed solution, which uses natural language to represent GDPR requirements and leverages rules alongside NLP semantic analysis for the automated support.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SVV - Software Verification and Validation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
AMARAL CEJAS, Orlando  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Langue du document :
Anglais
Titre :
Artificial Intelligence-enabled Automation for Compliance Checking against GDPR
Date de soutenance :
11 septembre 2023
Nombre de pages :
126
Institution :
Unilu - University of Luxembourg [Science, Technology and Medicine], Esch-sur-Alzette, Luxembourg
Intitulé du diplôme :
Docteur en Informatique
Promoteur :
Abualhaija, Sallam
Président du jury :
Briand, Lionel
Secrétaire :
Bianculli, Domenico
Membre du jury :
Spoletini, Paola
Ferrari, Alessio
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR13759068 - Artificial Intelligence-enabled Automation For Gdpr Compliance, 2019 (01/01/2020-31/12/2022) - Lionel Briand
Intitulé du projet de recherche :
R-AGR-3718 - BRIDGES/19/IS/13759068/ARTAGO - part UL (01/01/2020 - 31/12/2022) - SABETZADEH Mehrdad
Disponible sur ORBilu :
depuis le 23 septembre 2023

Statistiques


Nombre de vues
479 (dont 24 Unilu)
Nombre de téléchargements
580 (dont 9 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu