Article (Périodiques scientifiques)
UNTAG: Learning Generic Features for Unsupervised Type-Agnostic Deepfake Detection
MEJRI, Nesryne; GHORBEL, Enjie; AOUADA, Djamila
2023In IEEE International Conference on Acoustics, Speech and Signal Processing. Proceedings
Peer reviewed
 

Documents


Texte intégral
2023044110.pdf
Preprint Auteur (2.02 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Type-agnostic Deepfake Detection; Unsupervised classification
Résumé :
[en] This paper introduces a novel framework for unsupervised type-agnostic deepfake detection called UNTAG. Existing methods are generally trained in a supervised manner at the classification level, focusing on detecting at most two types of forgeries; thus, limiting their generalization capability across different deepfake types. To handle that, we reformulate the deepfake detection problem as a one-class classification supported by a self-supervision mechanism. Our intuition is that by estimating the distribution of real data in a discriminative feature space, deepfakes can be detected as outliers regardless of their type. UNTAG involves two sequential steps. First, deep representations are learned based on a self-supervised pretext task focusing on manipulated regions. Second, a one-class classifier fitted on authentic image embeddings is used to detect deepfakes. The results reported on several datasets show the effectiveness of UNTAG and the relevance of the proposed new paradigm. The code is publicly available.
Centre de recherche :
- Interdisciplinary Centre for Security, Reliability and Trust (SnT) > CVI² - Computer Vision Imaging & Machine Intelligence
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MEJRI, Nesryne  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > CVI2
GHORBEL, Enjie  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
UNTAG: Learning Generic Features for Unsupervised Type-Agnostic Deepfake Detection
Date de publication/diffusion :
08 juin 2023
Titre du périodique :
IEEE International Conference on Acoustics, Speech and Signal Processing. Proceedings
ISSN :
1520-6149
Maison d'édition :
IEEE. Institute of Electrical and Electronics Engineers, Grèce
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet FnR :
FNR16353350 - Deepfake Detection Using Spatio-temporal-spectral Representations For Effective Learning, 2021 (01/03/2022-28/02/2025) - Djamila Aouada
FNR16763798 - Unsupervised Multi-type Explainable Deepfake Detection, 2021 (01/10/2021-31/08/2025) - Nesryne Mejri
Organisme subsidiant :
FNR - Fonds National de la Recherche
Post Luxembourg
Disponible sur ORBilu :
depuis le 06 mars 2023

Statistiques


Nombre de vues
303 (dont 45 Unilu)
Nombre de téléchargements
186 (dont 22 Unilu)

citations Scopus®
 
9
citations Scopus®
sans auto-citations
4
OpenCitations
 
0
citations OpenAlex
 
5

Bibliographie


Publications similaires



Contacter ORBilu