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ABSTRACT

This paper introduces a novel framework for unsupervised
type-agnostic deepfake detection called UNTAG. Existing
methods are generally trained in a supervised manner at the
classification level, focusing on detecting at most two types of
forgeries; thus, limiting their generalization capability across
different deepfake types. To handle that, we reformulate the
deepfake detection problem as a one-class classification sup-
ported by a self-supervision mechanism. Our intuition is that
by estimating the distribution of real data in a discriminative
feature space, deepfakes can be detected as outliers regardless
of their type. UNTAG involves two sequential steps. First,
deep representations are learned based on a self-supervised
pretext task focusing on manipulated regions. Second, a one-
class classifier fitted on authentic image embeddings is used
to detect deepfakes. The results reported on several datasets
show the effectiveness of UNTAG and the relevance of the
proposed new paradigm. The code is publicly available.

Index Terms— Type-agnostic Deepfake Detection, Un-
supervised classification

1. INTRODUCTION

Deepfakes are realistic facial media that are either fully gener-
ated or partly altered using generative Neural Networks (NN).
Over the last few years, remarkable advances in deepfake gen-
eration have been made, raising concerns about their misuse.

Given this threat, several deepfake detection methods
have been introduced [1, 2, 3, 4]. Nevertheless, existing ap-
proaches remain hardly applicable to real-world scenarios
given their lack of inter-type generalization. In fact, general-
ization can be addressed at two levels: (1) At the inter-type
level, we mean robustness to unseen types of deepfakes.
Possible types of deepfakes are face-swaps (FS), facial reen-
actments (FR), facial attribute manipulations (FAM), and
fully synthetic faces (FSF); (2) At the intra-type level, we
mean robustness to unseen forgery methods generating the
same type of deepfakes. While intra-type generalization has
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Fig. 1: (1) The focus of state-of-the-art versus (2) ours.

been extensively studied [5], the topic of inter-type general-
ization remains less explored. Fig. 1 clarifies the distinction
between intra-type and inter-type generalizations. It depicts
the different types of deepfakes along with dataset examples
incorporating them.

Earlier approaches formulate the problem of deepfake
detection as an end-to-end supervised binary classification
task [1, 6]. Unfortunately, such methods have shown poor
intra-type generalization capabilities. Fully supervised NNs
tend to overfit the training data inducing a drop in perfor-
mance, as highlighted in [2, 7]. To overcome these lim-
itations, some methods employed a non-contrastive self-
supervision for extracting more generic features [8, 3, 9]. It
consists in training a NN using an adequate data augmenta-
tion technique that mimics known artifacts. However, these
methods are then fine-tuned using an annotated deepfake
dataset; leading to poor inter-type generalization [4].

This paper addresses the under-explored research prob-
lem of type-agnostic deepfake detection using unlabeled data.
As a solution, we propose to model the distribution of normal
images/videos and detect deepfakes as anomalies. Such an
approach also prevents the use of costly annotated data. To
the best of our knowledge, unsupervised classification for
deepfake detection has only been considered in [10] where a
Variational Auto-Encoder (VAE) was used to learn the dis-
tribution of real data. However, while this approach can be
conceptually employed for detecting any types of deepfakes,
the authors do not explicitly consider more than two usual
types (FS and FR). In Section 5, we show experimentally
its limited inter-type generalization capabilities. Two facts
might explain this. First, the generated features are not dis-
criminative enough as the learning process is not implicitly
guided to focus on specific artifact-sensitive regions. Sec-
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Fig. 2: Overview of UNTAG where (a) corresponds to a self-supervised step involving the prediction of spliced regions; and
(b) corresponds to the estimation of a generative one-class classifier using the self-supervised features of real images.

ond, the Variational Auto-Encoder (VAE) assumes that the
latent representations of real data follow a Gaussian distribu-
tion which might be too simplistic for modeling the complex
distribution of real data. In this paper, we propose a novel
Unsupervised Type-Agnostic deepfake detection (UNTAG)
which leverages a non-contrastive self-supervision mecha-
nism for learning generic yet discriminative features. A data
augmentation technique termed R-Splicer is introduced for
generating pseudo-labeled data. It augments real data by
applying splicing and blending operations on regions of a
given image. The selected regions are known to potentially
incorporate artifacts for different types of deepfakes. Then,
the augmented data are used to train a NN that detects the
spliced regions. Our intuition is that by employing this self-
supervision mechanism, the network will implicitly produce
features that can target artifact-sensitive regions. Second, the
feature learning step is followed by an unsupervised one-class
generative classifier that estimates the probability density of
real data; thus, considering only real data during training.
The paper is structured as follows: Section 2 formulates
the problem. Section 3 proposes the new paradigm of type-
agnostic deepfake detection using a one-class classifier. Our
method, UNTAG, is detailed in Section 4. The experimental
results are given in Section 5. Section 6 concludes this work.

2. PROBLEM FORMULATION

Let D = (I,L) be a dataset composed of N images I =
{Ii}Ni=1 and their corresponding labels L = {li}Ni=1 with li ∈
J0, 1K. I is defined by I = IR ∪ IF where IR and IF

are the subsets of real and fake images, respectively. For all
i ∈ J1, NK and Ii ∈ I, the label li = 1Ii∈IF , with 1 being
an indicator function. IF is assumed to contain all types of
deepfakes. The ultimate goal of deepfake detection is to find
a function f such that,

∀ i ∈ J1, NK and Ii ∈ I, f(Ii) = li. (1)

Earlier methods mostly learn f in an end-to-end manner [1,
7], showing poor intra-type generalization capabilities. As
a solution, self-supervised techniques usually decouple the
learning process into two stages [3, 11], as described below

∀ i ∈ J1, NK and Ii ∈ Ĩ, fθ2(fθ1(Ii)) = li. (2)

fθ1 which aims at extracting rich representations is estimated
by considering an auxiliary task. fθ2 is then learned for dis-
criminating between real and fake images based on the ex-
tracted representations. Typically, the estimation of fθ1 in-
volves only the set of real images IR. The latter is extended
to a set of transformed images IAug associated with pseudo-
labels LAug , forming DAug = (IAug,LAug), which is used
to perform the auxiliary task. Hence, fθ2 maps latent embed-
dings resulting from the auxiliary task to their correspond-
ing labels. For the second phase, a subset denoted by D̃ =
(Ĩ, L̃) ⊂ D is used in a supervised fashion. Note that Ĩ =
IR∪IF ′

and IF
′ ⊂ IF , since existing methods focus mostly

on one to two types of deepfakes, e.g., face-swaps and facial
reenactment. Although self-supervised mechanisms improve
the intra-type generalization aspect, only considering a sub-
set of fakes makes the inter-type generalization difficult.

3. A NEW PARADIGM FOR UNSUPERVISED
TYPE-AGNOSTIC DEEPFAKE DETECTION

In this paper, we propose to address the problem of unsuper-
vised type-agnostic deepfake detection. For that purpose, we
propose to decouple the feature learning from the final clas-
sification as in Eq. (2). First, a self-supervised strategy tai-
lored to the task of type-agnostic deepfake detection is lever-
aged for estimating fθ1 . However, instead of learning a bi-
nary classifier during the second stage, the embeddings fθ1(I)
generated from real samples I ∈ IR are assumed to fol-
low a multivariate, Gaussian mixture distribution, such that
fθ1(I) ∝ p(fθ1(I)|l = 0) and l is the label of I. The proba-
bility density p(fθ1(I)|l = 0) is defined as,

p(fθ1(I)|l = 0) =

K∑
i=1

Φi N (fθ1(I)|(µi,Σi), l = 0). (3)

Note that
∑K

i=1 Φi = 1, K is the number of Gaussian compo-
nents and Φi is the weight of the component i. This assump-
tion is in line with the concentration hypothesis [12] which
suggests that the embeddings of real and fake data are respec-
tively assumed to be concentrated and non concentrated in the



Fig. 3: The transformations generated by R-splicer given a real image

feature space. At this stage, the problem can be seen as a one-
class classification, since only real images are taken into ac-
count for training. As real data is unlikely to be noise-free, we
refer to this formulation as an unsupervised task. The func-
tion fθ2 allows the discrimination between real and fake latent
features and is computed as follows,

fθ2(fθ1(I))) = 1− 1[−L(θ2|fθ1 (I))>τ)], (4)

where L(θ2|fθ1(I)) = −Log(p(fθ1(I)|l = 0) is the log-
likelihood given the parameter θ2 = (µi,Σi)i∈J1,KK and τ >
0 is a predefined threshold.

4. UNTAG: UNSUPERVISED TYPE-AGNOSTIC
DEEPFAKE DETECTION

Inspired by [13], we propose to estimate fθ1 using an auxil-
iary task tailored for type-agnostic deepfake detection. Con-
cretely, given a dataset DAug = (IAug,LAug) of transformed
images and their generated pseudo-labels, the pretext task
learns in an end-to-end manner to classify which transfor-
mation was applied to an input image. Specifically, given
an image Im ∈ IAug and its pseudo-label lm ∈ J0, kK, we
estimate the correct pseudo-label such that

fθ3 ◦ fθ1(Im) = lm. (5)

fθ1(Im) denotes the features extracted by the backbone net-
work and fθ3(fθ1(Im)) refers to the predicted pseudo-label.
It is done by minimizing the following loss denoted by Rp,

Rp = E
Im∼πX

[
H(lm, Lfθ3◦fθ1 (l|Im)

]
, (6)

where πX is the distribution of the augmented training
data, H is the cross-entropy loss, and Lfθ3◦fθ1 (lm|Im) =
Lfθ3

(lm|fθ1(Im)) is the likelihood of label lm given the im-
age embeddings f(Im). Overall, the key idea for learning
discriminative features consists in applying suitable transfor-
mations to real images. Hence, we propose R-splicer as a
data augmentation technique to generate DAug .
R-Splicer. Augmenting real data by generating pseudo-fake
images is a common practice in deepfake detection [14, 15,
16, 4, 8]. Such methods simulate characteristic face-swaps
artifacts using simplistic operations [14, 15, 16, 4]. These
augmentation strategies, coupled with self-supervision have
significantly boosted the intra-type generalization of deepfake
detectors. In particular, they mostly focus on creating syn-
thetic blending or warping artifacts located in the boundaries
of the facial area. As a result, these approaches struggle to
achieve inter-type generalization as experimentally demon-
strated in [4] on GAN-generated images. Hence, we argue

that inter-type generalization can be enhanced by simulating
artifacts not only in the facial boundaries but also in the back-
ground and in more localized facial regions. Our intuition is
that each forgery type will likely introduce irregularities in
different regions of images. In line with this assumption,
R-Splicer applies splicing operations on a predefined set of
facial and non-facial regions. In total, k (k = 5) regions
are considered (background, mouth, nose, eyes, brows). The
choice of regions is heuristically made by taking into account
three elements: (1) areas in which artifacts are more likely to
appear for different types of deepfakes; (2) areas with high-
level semantics; and (3) simplicity of the splicing operation.
A similar idea has been investigated in [8]. Nevertheless, this
work differs from ours as the generated manipulations are
used along with actual forged images to train a supervised
binary classifier. Formally, a spliced image is defined as

Im = Mi ⊙ Id + (J−Mi)⊙ Ir, (7)
where Mi is a grayscale mask corresponding to the ith re-
gion, Ir is the image to be spliced, Id is the image donating
its region of interest, J is the all-ones matrix, and ⊙ is the
element-wise multiplication. Therefore, using a set of nr real
images from IR, the dataset DAug is built by applying on
each image all the predefined splicing operations denoted by
T = {Tj}kj=0, where k is a heuristically chosen number of
regions. Consequently, IAug =

⋃nr

i=0(
⋃k

j=0 Tj(Ii)) with T0
being the identity transformation, i.e, T0(I) = I for I ∈ IR

and Tj for j ̸= 0 a function that splices the jth region and
replaces it with the same region from another image. The
pseudo-labels LAug =

⋃nr

i=0(
⋃k

j=0 j) are shown in Fig 2 a.
For detecting deepfakes, a Gaussian Mixture Model (GMM)
denoted by fθ2 in Eq. (4) is used. After convergence, the
pretext task network is frozen and is used to extract real im-
age embeddings. These embeddings are used to estimate the
parameters of a GMM. Then, at inference, the GMM discrim-
inates between embeddings extracted from real images and
non-authentic ones, as shown in Eq. (4).

5. EXPERIMENTS

5.1. Experimental protocol
Baselines. We compare UNTAG to five baselines: (1) A su-
pervised detector called DFD-HF [17] (2) a self-supervised
detector termed DSP-FWA [15]; (3) the unsupervised deep-
fake detection technique called OC-FakeDect [10] ; (4)
a generic contrastive unsupervised approach entitled Sim-
CLR [18]; and (5) a generic non-contrastive unsupervised
method called RotNet [19]. Furthermore, for a fair com-
parison, besides training DFD-HF and DSP-FWA with their



Dataset
Supervised methods Self-supervised methods Unsupervised methods

DFD-HF [17] DF-FH-OC DSP-FWA [15] DSP-FWA-OC SimCLR [18] RotNet [19] OC-FakeDect [10] UNTAG
AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc.

Celeb-DF [20] 43.12 50.70 25.40 50.00 49.47 49.50 52.61 52.60 43.06 56.22 72.05 69.75 74.10 69.95 74.71 70.64
FF++ [1] 51.21 50.75 31.06 50.00 53.65 53.36 72.00 71.79 51.44 59.72 75.28 70.71 54.16 54.27 81.81 75.61

StyleGAN2 [21] 50.66 52.35 59.87 37.36 63.57 63.10 50.93 50.62 37.97 56.46 59.26 60.87 49.84 65.82 82.81 76.87
StarGAN2 [22] 76.99 50.75 51.50 43.33 50.76 50.81 54.30 54.35 15.31 50.40 34.58 56.64 41.35 76.50 91.14 87.30
ForgeryNet [23] 43.10 50.32 37.66 49.95 51.65 51.40 57.20 57.13 54.18 57.23 51.82 53.84 63.81 60.32 77.02 70.70

Table 1: AUC and accuracy (Acc.) of UNTAG compared to the chosen baselines on different datasets.

Our pretext
task OCC Celeb-DF [20] FF++ [1] StyleGAN [21] StarGAN [22] ForgeryNet [23]

AUC(%) Acc.(%) AUC(%) Acc.(%) AUC(%) Acc.(%) AUC(%) Acc.(%) AUC(%) Acc.(%)

✓ 62.51 61.17 54.53 53.75 45.64 50.28 18.17 50.10 55.29 57.73
✓ 27.43 53.55 54.85 43.21 69.75 73.99 65.46 70.42 24.82 51.20

✓ ✓ 74.71 70.64 81.81 75.61 82.81 76.87 91.14 87.30 77.02 70.70

Table 2: Results with and without the proposed auxiliary task and the GMM as one-class classifier (OCC).

original protocols, two variants DFD-HF-OC and DSP-
FWA-OC are proposed, where the classification layers are
discarded, and a GMM is fitted using real data embeddings.
Datasets. For our experiments, datasets with different types
of deepfakes are considered: ForgeryNet [23] (FS, FR, FAM,
FSF), FF++ [1] (FS, FR), Celeb-DF [20] (FS), StarGAN2 [22]
(FAM) and StyleGAN2 [21] (FSF). ForgeryNet [23] is a re-
cently introduced dataset. Compared to other datasets, it has
the advantage to include all types of deepfakes. During test-
ing, balanced sets of 2000 samples are built, where forged
data is randomly sampled from forgery datasets, while real
data is randomly sampled from the ForgeryNet validation set.
Implementation details. The regions are defined with Medi-
apipe landmarks1. R-Splicer generates from real data 20, 406
spliced images, which are used to finetune a ResNet-18 [24]
in the auxiliary task. Data augmentation, such as random hor-
izontal flipping and random grayscaling, was used. A GMM
with 3 components (empirically fixed) is then fitted on real
image embeddings.

5.2. Results
Comparison with the baselines. Table 1 reports the obtained
results on the five considered datasets. UNTAG clearly out-
performs state-of-the-art methods on all the datasets. Over-
all, unsupervised classification-based methods such as Sim-
CLR [18], RotNet [19], OC-FakeDetect [10] and UNTAG are
more effective for learning features that are robust to different
types of forgeries. In contrast, methods that are learned in a
supervised manner such as DFD-HF [17] and DSP-FWA [15]
seem to be not suitable for type-agnostic deepfake detec-
tion. Despite the fact that DFD-HF [17] achieves an AUC of
91.63% using the original protocol of [17], changing the test-
ing set impacts its performance. This suggests that the model
overfits the high-frequency artifacts rather than learning type-
agnostic features. Finally, the irrelevance of the features
generated by DFD-HF [17] is confirmed when observing its
unsupervised variant. In fact, the performance drops impor-
tantly when using DFD-HF-OC, contrary to DSP-FWA-OC,

1Face: 108, 68, 143, 213, 210, 208, 426, 430, 433, 372, 298, 337, Brows: 9, 68,
156, 124, 53, 52, 8, 282, 283, 353, 333, 298, Eyes: 8, 222, 224, 35, 230, 6, 450, 265,
445, 442, Nose: 193, 203, 164, 423, 417, Mouth: 164, 165, 212, 200, 432, 391

which learns from simulated warping artifacts. The results
show that UNTAG also outperforms SimCLR [18], Rot-
Net [19] and OC-FakeDect [10] regardless of the considered
manipulation type. This success could be explained by the
relevance of the proposed self-supervision task for deep-
fake detection. In fact, the self-supervision employed by
RotNet [19] which is based on rotation predictions are less
suitable for type-agnostic deepfake detection. Similarly, Sim-
CLR [18] which is a contrastive approach achieves lower
generalization performance than UNTAG.
Ablation Study. Table 2 reports the ablation study results.
First, we consider the pretext task as a standalone classi-
fier. To this end, the pretext task DNN is retrained as a
binary classifier detecting spliced and non-spliced images
and used for detecting deepfakes at inference. The results
show that the network is only sensitive to face-swaps as in
Celeb-DF [20], but performs poorly on GAN-generated im-
ages. Second, instead of fitting the GMM model with the
real-image embeddings, we directly use the set of authentic
images to estimate the GMM parameters. Results show that
the GMM can distinguish between real and GAN-generated
images, suggesting that these images have inherently differ-
ent generation processes. Both experiments show that our
pretext task and one-class classification are complementary
and justify their use for type-agnostic deepfake detection.

6. CONCLUSION

This work has formulated the problem of deepfake detection
as an unsupervised type-agnostic problem. A solution termed
UNTAG using a one-class classifier and a self-supervision
mechanism has been proposed. In particular, a novel auxiliary
task tailored specifically for deepfake detection has been in-
troduced. It aims at learning discriminative features by detect-
ing manipulated regions with simple splicing-blending opera-
tions. Finally, a GMM is fitted on the learned representations
of the real data. As a result, deepfakes can be detected as
anomalies regardless of their types and without using any data
annotation. Lastly, the newly formulated paradigm for type-
agnostic deepfake detection is believed to be timely with a
high potential to motivate the community.



7. REFERENCES

[1] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva,
Christian Riess, Justus Thies, and Matthias Nießner,
“Faceforensics++: Learning to detect manipulated fa-
cial images,” in Proc. ICCV, 2019, pp. 1–11.

[2] Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew
Owens, and Alexei A Efros, “Cnn-generated images are
surprisingly easy to spot... for now,” in Proc. CVPR,
2020, pp. 8695–8704.

[3] Alexandros Haliassos, Rodrigo Mira, Stavros Petridis,
and Maja Pantic, “Leveraging real talking faces via self-
supervision for robust forgery detection,” arXiv preprint
arXiv:2201.07131, 2022.

[4] Kaede Shiohara and Toshihiko Yamasaki, “Detecting
deepfakes with self-blended images,” in Proc. CVPR,
2022, pp. 18720–18729.

[5] Felix Juefei-Xu, Run Wang, Yihao Huang, Qing Guo,
Lei Ma, and Yang Liu, “Countering malicious deep-
fakes: Survey, battleground, and horizon,” 2021.

[6] Ruben Tolosana, Sergio Romero-Tapiador, Julian Fier-
rez, and Ruben Vera-Rodriguez, “Deepfakes evolution:
Analysis of facial regions and fake detection perfor-
mance,” in ICPR. Springer, 2021, pp. 442–456.

[7] Nesryne Mejri, Konstantinos Papadopoulos, and
Djamila Aouada, “Leveraging high-frequency compo-
nents for deepfake detection,” in IEEE Workshop on
Multimedia Signal Processing, 2021.

[8] Liang Chen, Yong Zhang, Yibing Song, Lingqiao Liu,
and Jue Wang, “Self-supervised learning of adversar-
ial example: Towards good generalizations for deepfake
detection,” in Proc. CVPR, 2022, pp. 18710–18719.

[9] Sitong Liu, Zhichao Lian, Siqi Gu, and Liang Xiao,
“Block shuffling learning for deepfake detection,” arXiv
preprint arXiv:2202.02819, 2022.

[10] Hasam Khalid and Simon S Woo, “Oc-fakedect: Classi-
fying deepfakes using one-class variational autoencoder.
in 2020 ieee,” in CVPRW, 2020, pp. 2794–2803.

[11] Sheldon Fung, Xuequan Lu, Chao Zhang, and Chang-
Tsun Li, “Deepfakeucl: Deepfake detection via unsu-
pervised contrastive learning,” in 2021 IJCNN. IEEE,
2021, pp. 1–8.

[12] Lukas Ruff, Deep one-class learning: a deep learning
approach to anomaly detection, Technische Universitaet
Berlin (Germany), 2021.

[13] Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas
Pfister, “Cutpaste: Self-supervised learning for anomaly
detection and localization,” in Proc. CVPR, 2021, pp.
9664–9674.

[14] Lingzhi Li, Jianmin Bao, Ting Zhang, Hao Yang, Dong
Chen, Fang Wen, and Baining Guo, “Face x-ray for
more general face forgery detection,” in Proc. CVPR,
2020, pp. 5001–5010.

[15] Yuezun Li and Siwei Lyu, “Exposing deepfake videos
by detecting face warping artifacts,” arXiv preprint
arXiv:1811.00656, 2018.

[16] Tianchen Zhao, Xiang Xu, Mingze Xu, Hui Ding, Yuan-
jun Xiong, and Wei Xia, “Learning self-consistency for
deepfake detection,” in Proc. CVPR, 2021, pp. 15023–
15033.

[17] Yuchen Luo, Yong Zhang, Junchi Yan, and Wei
Liu, “Generalizing face forgery detection with high-
frequency features,” in Proceedings of the IEEE/CVF
CVPR, 2021, pp. 16317–16326.

[18] Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton, “A simple framework for contrastive
learning of visual representations,” in ICML. PMLR,
2020, pp. 1597–1607.

[19] Spyros Gidaris, Praveer Singh, and Nikos Komodakis,
“Unsupervised representation learning by predicting im-
age rotations,” arXiv preprint arXiv:1803.07728, 2018.

[20] Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei
Lyu, “Celeb-df: A large-scale challenging dataset for
deepfake forensics,” in Proc. CVPR, 2020, pp. 3207–
3216.

[21] Tero Karras, Samuli Laine, Miika Aittala, Janne Hell-
sten, Jaakko Lehtinen, and Timo Aila, “Analyzing and
improving the image quality of stylegan,” in Proc.
CVPR, 2020, pp. 8110–8119.

[22] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo
Ha, “Stargan v2: Diverse image synthesis for multiple
domains,” in Proc. CVPR, 2020, pp. 8188–8197.

[23] Yinan He, Bei Gan, Siyu Chen, Yichun Zhou, Guojun
Yin, Luchuan Song, Lu Sheng, Jing Shao, and Ziwei
Liu, “Forgerynet: A versatile benchmark for compre-
hensive forgery analysis,” in Proc. CVPR, 2021, pp.
4360–4369.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proc. CVPR, 2016, pp. 770–778.


