[en] This short paper takes initial steps towards developing a novel
approach, called log slicing, that aims to answer a practical
question in the field of log analysis: Can we automatically
identify log messages related to a specific message (e.g., an error
message)? The basic idea behind log slicing is that we can consider
how different log messages are "computationally related" to each other
by looking at the corresponding logging statements in
the source code. These logging statements are identified by 1) computing a backwards program slice, using as criterion the logging statement that generated a problematic log message; and 2) extending that slice to include relevant logging statements.
The paper presents a problem definition of log
slicing, describes an initial approach for log slicing, and discusses
a key open issue that can lead towards new research directions.
Centre de recherche :
- Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SVV - Software Verification and Validation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
DAWES, Joshua ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Shin, Donghwan
BIANCULLI, Domenico ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Towards Log Slicing
Date de publication/diffusion :
avril 2023
Nom de la manifestation :
26th International Conference on Fundamental Approaches to Software Engineering
Lieu de la manifestation :
Paris, France
Date de la manifestation :
from 22-4-2023 to 27-4-2023
Manifestation à portée :
International
Titre de l'ouvrage principal :
Fundamental Approaches to Software Engineering (FASE 2023) Proceedings
Maison d'édition :
Springer, Cham, Suisse
Collection et n° de collection :
LNCS
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet européen :
H2020 - 957254 - COSMOS - DevOps for Complex Cyber-physical Systems
van der Aalst, W.M.P.: Distributed process discovery and conformance checking. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software Engineering. pp. 1–25. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)
Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable offline monitoring. In: Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification. pp. 31–47. Springer International Publishing, Cham (2014)
Bushong, V., Sanders, R., Curtis, J., Du, M., Cerny, T., Frajtak, K., Bures, M., Tisnovsky, P., Shin, D.: On matching log analysis to source code: A systematic mapping study. In: Proceedings of the International Conference on Research in Adaptive and Convergent Systems. p. 181–187. RACS ’20, Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3400286. 3418262, https://doi.org/10.1145/3400286.3418262
He, S., He, P., Chen, Z., Yang, T., Su, Y., Lyu, M.R.: A survey on automated log analysis for reliability engineering. ACM Comput. Surv. 54(6) (Jul 2021). https://doi.org/10.1145/3460345
Jia, T., Yang, L., Chen, P., Li, Y., Meng, F., Xu, J.: Logsed: Anomaly diagnosis through mining time-weighted control flow graph in logs. In: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD). pp. 447–455. IEEE, IEEE, Honolulu, CA, USA (2017). https://doi.org/10.1109/CLOUD.2017.64
Liu, Z., Xia, X., Lo, D., Xing, Z., Hassan, A.E., Li, S.: Which variables should I log? IEEE Transactions on Software Engineering 47(9), 2012–2031 (2021). https://doi.org/10.1109/TSE.2019.2941943
Messaoudi, S., Shin, D., Panichella, A., Bianculli, D., Briand, L.C.: Log-based slicing for system-level test cases. In: Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis. p. 517–528. ISSTA 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi. org/10.1145/3460319.3464824, https://doi.org/10.1145/3460319.3464824
Mi, H., Wang, H., Zhou, Y., Lyu, M.R.T., Cai, H.: Toward fine-grained, unsupervised, scalable performance diagnosis for production cloud computing systems. IEEE Transactions on Parallel and Distributed Systems 24(6), 1245–1255 (2013). https://doi.org/10.1109/TPDS.2013.21
Nandi, A., Mandal, A., Atreja, S., Dasgupta, G.B., Bhattacharya, S.: Anomaly detection using program control flow graph mining from execution logs. In: 2016 26nd ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). pp. 215–224. KDD ’16, Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939712
Schipper, D., Aniche, M., van Deursen, A.: Tracing back log data to its log statement: From research to practice. In: 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR). pp. 545–549 (2019). https://doi.org/10.1109/MSR.2019.00081
Shin, D., Bianculli, D., Briand, L.: PRINS: scalable model inference for component-based system logs. Empirical Software Engineering 27(4), 87 (2022). https://doi.org/10.1007/s10664-021-10111-4, https://doi.org/10. 1007/s10664-021-10111-4
Tak, B.C., Tao, S., Yang, L., Zhu, C., Ruan, Y.: Logan: Problem diagnosis in the cloud using log-based reference models. In: 2016 IEEE International Conference on Cloud Engineering (IC2E). pp. 62–67 (2016). https://doi.org/10.1109/IC2E. 2016.12
Yuan, D., Zheng, J., Park, S., Zhou, Y., Savage, S.: Improving software diag-nosability via log enhancement. ACM Trans. Comput. Syst. 30(1) (Feb 2012). https://doi.org/10.1145/2110356.2110360
Zhao, X., Rodrigues, K., Luo, Y., Stumm, M., Yuan, D., Zhou, Y.: Log20: Fully automated optimal placement of log printing statements under specified overhead threshold. In: 2017 26th Symposium on Operating Systems Principles (SOSP). p. 565–581. SOSP ’17, Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3132747.3132778
Zhao, X., Rodrigues, K., Luo, Y., Yuan, D., Stumm, M.: Non-Intrusive performance profiling for entire software stacks based on the flow reconstruction principle. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). pp. 603–618. USENIX Association, Savannah, GA (Nov 2016), https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao