
Towards Log Slicing

Joshua Heneage Dawes1 [0000−0002−2289−1620] , Donghwan Shin1,2 [0000−0002−0840−6449] ,
and Domenico Bianculli1 [0000−0002−4854−685𝑋]

1 University of Luxembourg, Luxembourg, Luxembourg
{joshua.dawes,domenico.bianculli}@uni.lu
2 University of Sheffield, Sheffield, United Kingdom

d.shin@sheffield.ac.uk

Abstract. This short paper takes initial steps towards developing a novel ap-
proach, called log slicing, that aims to answer a practical question in the field
of log analysis: Can we automatically identify log messages related to a specific
message (e.g., an error message)? The basic idea behind log slicing is that we can
consider how different log messages are “computationally related” to each other
by looking at the corresponding logging statements in the source code. These log-
ging statements are identified by 1) computing a backwards program slice, using
as criterion the logging statement that generated a problematic log message; and
2) extending that slice to include relevant logging statements.
The paper presents a problem definition of log slicing, describes an initial approach
for log slicing, and discusses a key open issue that can lead towards new research
directions.

Keywords: Log · Program Analysis · Static Slicing.

1 Introduction

When debugging failures in software systems of various scales, the logs generated by exe-
cutions of those systems are invaluable [5]. For example, given an error message recorded
in a log, an engineer can diagnose the system by reviewing log messages recorded before
the error occurred. However, the sheer volume of the logs (e.g., 50 GB/h [9]) makes
it infeasible to review all of the log messages. Considering that not all log messages
are necessarily related to each other, in this paper we lay the foundations for answering
the following question: can we automatically identify log messages related to a specific
message (e.g., an error message)?

A similar question for programs is already addressed by program slicing [2, 14].
Using this approach, given a program composed of multiple program statements and
variables, we can identify a set of program statements (i.e., a program slice) that affect
the computation of specific program variables (at specific positions in the source code).

Inspired by program slicing, in this paper we take initial steps towards developing
a novel approach, called log slicing. We also highlight a key issue to be addressed by
further research. Once this issue has been addressed, we expect log slicing to be able
to identify the log messages related to a given problematic log message by using static
analysis of the code that generated the log. Further, since we will be using static analysis

Joshua DAWES
This version of the contribution has been accepted for publication, after peer review but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-031-30826-0_14

2 J. H. Dawes, D. Shin, and D. Bianculli

(1) logger.info("check memory status: %s" % mem.status)

(2) db = DB.init(mode="default")

(3) logger.info("DB connected with mode: %s" % db.mode)

(4) item = getItem(db)

(5) logger.info("current item: %s" % item)

(6) if check(item) is "error":
(7) logger.error("error in item: %s" % item)

Fig. 1. An example program 𝑃ex

(1) check memory status: okay

(2) DB connected with mode: default

(3) current item: pencil

(4) error in item: pencil

Fig. 2. An example execution log 𝐿ex of 𝑃ex

of source code, we highlight that our approach is likely to be restricted to identifying
problems that can be localised at the source code level.

The rest of the paper is structured as follows: Section 2 illustrates a motivating
example. Section 3 sketches an initial approach for log slicing, while Section 4 shows
its application to the example, and discusses limitations and open issues. Section 5
discusses related work. Section 6 concludes the paper.

2 Motivating Example

Let us consider a simplified example program 𝑃ex (Figure 1) connecting to a database
and getting an item from it. For simplicity, we denote 𝑃ex as a sequence of program
statements ⟨𝑠1, 𝑠2, . . . , 𝑠7⟩ where 𝑠𝑘 is the 𝑘-th statement. We can see that 𝑃ex contains
logging statements (i.e., 𝑠1, 𝑠3, 𝑠5, and 𝑠7) that will generate log messages when exe-
cuted3. Figure 2 shows a simplified execution log 𝐿ex of 𝑃ex. Similar to 𝑃ex, we denote
𝐿ex as a sequence of log messages ⟨𝑚1, 𝑚2, 𝑚3, 𝑚4⟩ where 𝑚𝑘 is the 𝑘-th log message.
Note that we do not consider additional information that is often found in logs, such as
timestamp and log level (e.g., info and debug)4, so these are omitted.

The last log message “error in item: pencil” in 𝐿ex indicates an error. Calling
this log message 𝑚err, let us suppose that a developer is tasked with addressing the error
by reviewing the log messages leading up to 𝑚err. Though we have only four messages
in 𝐿ex, it is infeasible in practice to review a huge amount of log messages generated by
complex software systems. Furthermore, it is not necessary to review all log messages
generated before 𝑚err since only a subset of them is related to 𝑚err; for example, if

3 If a program statement generates a log message when executed, it is considered a logging
statement; otherwise, it is a non-logging statement.

4 We ignore log levels since the user may choose a log message of any level to start log slicing.

Towards Log Slicing 3

we look at 𝐿ex and 𝑃ex together, we can see that the first log message “check memory
status: okay” does not contain information that is relevant to the error message,
𝑚err. In particular, we can see this by realising that the variable mem logged in the first
log message does not affect the computation of the variable item logged in the error
message.

Ultimately, if we can automatically filter out such unrelated messages, with the goal
of providing a log to the developer that only contains useful log messages, then the
developer will better investigate and address issues in less time. We thus arrive at the
central problem of this short paper: How does one determine which log messages are
related to a certain message of interest?

An initial, naive solution would be to use keywords to identify related messages. In
our example log 𝐿ex, one could use the keyword “pencil” appearing in the error message
to identify the messages related to the error, resulting in only the third log message.
However, if we look at the source code in 𝑃ex, we can notice that the second log message
“DB connected with mode: default” could be relevant to the error because this
message was constructed using the db variable, which is used to compute the value
of variable item. This example highlights that keyword-based search cannot identify
all relevant log messages, meaning that a more sophisticated approach to identifying
relevant log messages is needed.

3 Log Slicing

A key assumption in this work is that it is possible to associate each log message
with a unique logging statement in source code. We highlight that, while we do not
describe a solution here, this is a reasonable assumption because there is already work on
identifying the mapping between logging statements and log messages [4, 11]. Therefore,
we simply assume that the mapping is known.

Under this assumption, we observe that the relationship among messages in the log
can be identified based on the relationship among their corresponding logging statements
in the source code. Hence, we consider two distinct layers: the program layer, where
program statements and variables exist, and the log layer, where log messages generated
by the logging statements of the program exist.

To present our log slicing approach, as done in Section 2, let us denote a program 𝑃

as a sequence of program statements and a log 𝐿 as a sequence of log messages. Also,
we say a program (slice) 𝑃′ is a subsequence of 𝑃, denoted by 𝑃′ ⊏ 𝑃, if all statements
of 𝑃′ are in 𝑃 in the same order. Further, we extend containment to sequences and write
𝑠 ∈ 𝑃 when, with 𝑃 = ⟨𝑠1, . . . , 𝑠𝑢⟩, there is some 𝑘 such that 𝑠𝑘 = 𝑠. The situation
is similar for a log message 𝑚 contained in a log 𝐿, where we write 𝑚 ∈ 𝐿. Now, for
a program 𝑃 = ⟨𝑠1, . . . , 𝑠𝑢⟩ and its execution log 𝐿 = ⟨𝑚1, . . . , 𝑚𝑣⟩, let us consider a
log message of interest 𝑚 𝑗 ∈ 𝐿 that indicates a problem. An example could be the log
message “error in item: pencil” from the example log 𝐿ex in Figure 2. Based on
the assumption made at the beginning of this section, that we can identify the logging
statement 𝑠𝑖 ∈ 𝑃 (in the program layer) that generated 𝑚 𝑗 ∈ 𝐿 (in the log layer), our log
slicing approach is composed of three abstract steps as follows:

4 J. H. Dawes, D. Shin, and D. Bianculli

Step 1: Compute a program slice 𝑆𝑟 ⊏ 𝑃 using the combination of the statement 𝑠𝑖
and the program variables in 𝑠𝑖 as a slicing criterion. Notice that, apart from
the logging statement 𝑠𝑖 that is a part of the slicing criterion, 𝑆𝑟 is composed
solely of non-logging statements because logging statements do not affect the
computation of any program variable5.

Step 2: Identify another program slice 𝑆𝑙 ⊏ 𝑃 composed of logging statements that are
“relevant” to 𝑆𝑟 . Here, a logging statement 𝑠𝑙 ∈ 𝑆𝑙 is relevant to a non-logging
statement 𝑠𝑟 ∈ 𝑆𝑟 if the message that 𝑠𝑙 writes to the log contains information
that is relevant to the computation being performed by 𝑠𝑟 . Formally, we write
⟨𝑠𝑙 , 𝑠𝑟 ⟩ ∈ relevance𝑃 , that is, relevance𝑃 is a binary relation over statements in
the program 𝑃.

Step 3: Remove any log message 𝑚 ∈ 𝐿 that was not generated by some 𝑠𝑙 ∈ 𝑆𝑙 .

The result of this procedure would be a log slice that contains log messages that are
relevant to 𝑚 𝑗 .

We highlight that defining the relation relevance𝑃 for a program 𝑃 (intuitively,
deciding whether the information written to a log by a logging statement is relevant to
the computation being performed by some non-logging statement) is a central problem
in this work, and will be discussed in more depth in the next section.

4 An Illustration of Log Slicing

We now illustrate the application of our log slicing procedure to our example program
and log (Figures 1 and 2). Since, as we highlighted in Section 3, the definition of
the relevance𝑃 relation is a central problem of this work, we will begin by fixing a
provisional definition. A demonstration of our log slicing approach being applied using
this definition of relevance𝑃 will then show why this definition is only provisional.

4.1 A Provisional Definition of Relevance

Our provisional definition makes use of some attributes of statements that can be com-
puted via simple static analyses. In particular, for a statement 𝑠, we denote by vars(𝑠)
the set of variables that appear in 𝑠 (where a variable x appears in a statement 𝑠 if it is
found in the abstract syntax tree of 𝑠). If 𝑠 is a logging statement that writes a message
𝑚 to the log, then, assuming that the only way in which a logging statement can use a
variable is to add information to the message that it writes to the log, the set vars(𝑠)
corresponds to the set of variables used to construct the message 𝑚. If 𝑠 is a non-logging
statement, then vars(𝑠) represents the set of variables used by 𝑠.

Now, let us consider a logging statement 𝑠𝑙 , that writes a message 𝑚𝑙 to the log, and
a non-logging statement 𝑠𝑟 . We define relevance𝑃 6 over the statements in a program 𝑃

by ⟨𝑠𝑙 , 𝑠𝑟 ⟩ ∈ relevance𝑃 if and only if vars(𝑠𝑙) ∩ vars(𝑠𝑟) ≠ ∅. In other words, a logging
statement is relevant to a non-logging statement whenever the two statements share at
least one variable.
5 Assuming a logging statement does not call an impure function.
6 We remark that this simple provisional definition of relevance misses relating statements that

only share syntactically different aliased variables

Towards Log Slicing 5

(2) db = DB.init(mode="default")

(4) item = getItem(db)

(6) if check(item) is "error":
(7) logger.error("error in item: %s" % item)

Fig. 3. Program slice 𝑆𝑟 of the program 𝑃ex when 𝑠7 and its variable item are used as the slicing
criterion

(3) logger.info("DB connected with mode: %s" % db.mode)

(5) logger.info("current item: %s" % item)

(7) logger.error("error in item: %s" % item)

Fig. 4. Logging statements 𝑆𝑙 relevant to 𝑆𝑟

4.2 Applying Log Slicing

Taking the program 𝑃ex from Figure 1 and the log 𝐿ex from Figure 2, we now apply the
steps described in Section 3, while considering the log message 𝑚4 ∈ 𝐿ex (i.e., “error
in item: pencil”) to be the message of interest 𝑚𝑖 .

Step 1. Under our assumption that log messages can be mapped to their generating
logging statements, we can immediately map 𝑚4 to 𝑠7 ∈ 𝑃ex. Once we have identified the
logging statement 𝑠7 that generated 𝑚4, we slice 𝑃ex backwards, using 𝑠7 and its variable
item as the slicing criterion. This would yield the program slice 𝑆𝑟 = ⟨𝑠2, 𝑠4, 𝑠6, 𝑠7⟩ as
shown in Figure 3.

Step 2. The program slice 𝑆𝑟 = ⟨𝑠2, 𝑠4, 𝑠6, 𝑠7⟩ yielded by Step 1 contains only non-
logging statements (apart from the logging statement 𝑠7 used as the slicing criterion).
Hence, we must now determine which logging statements (found in 𝑃ex) write mes-
sages that are relevant to the statements in 𝑆𝑟 . More formally, we must find a se-
quence of logging statements 𝑆𝑙 ⊏ 𝑃ex such that ⟨𝑠𝑙 , 𝑠𝑟 ⟩ ∈ relevance𝑃 for any log-
ging statement 𝑠𝑙 ∈ 𝑆𝑙 and a non-logging statement 𝑠𝑟 ∈ 𝑆𝑟 \ {𝑠7}. For this, we use
the provisional definition of relevance that we introduced in Section 4.1, that is, we
identify the logging statements that share variables with the statements in our pro-
gram slice 𝑆𝑟 . For example, let us consider the non-logging statement 𝑠𝑟 = 𝑠2 ∈
𝑆𝑟 (i.e., “db = DB.init(mode="default")”). Our definition tells us that the log-
ging statement 𝑠𝑙 = 𝑠3 (i.e., “logger.info("DB connected with mode: %s" %
db.mode)”) should be included in 𝑆𝑙 , since vars(𝑠3) ∩ vars(𝑠2) = {db}. Similarly, the
logging statement 𝑠5 should be included in 𝑆𝑙 since vars(𝑠3)∩vars(𝑠2) = {item}, and the
logging statement 𝑠7 should be included in 𝑆𝑙 since vars(𝑠7) ∩ vars(𝑠6) = {item}. Note
that the logging statement 𝑠2 (i.e., “logger.info("check memory status: %s" %
mem.status)”) would be omitted by our definition because no statements in 𝑆𝑟 use the
variable mem. As a result, with respect to our definition of relevance, 𝑆𝑙 = ⟨𝑠3, 𝑠5, 𝑠7⟩ as
shown in Figure 4.

6 J. H. Dawes, D. Shin, and D. Bianculli

(2) DB connected with mode: default

(3) current item: pencil

(4) error in item: pencil

Fig. 5. Log slicing result from 𝐿ex when 𝑚4 is the message of interest

Step 3. Using 𝑆𝑙 = ⟨𝑠3, 𝑠5, 𝑠7⟩, we now remove log messages from 𝐿ex that were
generated by logging statements not included in 𝑆𝑙 . The result is the sliced log in
Figure 5.

4.3 Limitations and Open Issues

We now discuss the limitations of the definition of relevance presented so far, along with
a possible alternative approach. We also highlight a key open issue.

Limitations. Using a combination of program slicing and our provisional definition of
relevance seems, at least initially, to be an improvement on the keyword-based approach
described in Section 2. However, the major limitation of this definition, that looks at
program variables shared by logging and non-logging statements, is that a logging
statement must use variables in the first place. Hence, this definition can no longer be
used if we are dealing with log messages that are statically defined (i.e., do not use
variables to construct part of the message written to the log). In this case, we must look
to the semantic content of the log messages.

An Alternative. Our initial suggestion in this case is to introduce a heuristic based on
the intuition that particular phrases in log messages will often accompany particular
computation being performed in program source code. Such a heuristic would operate
as follows:

1. For each non-logging statement 𝑠, inspect each variable 𝑣 appearing in 𝑠.
2. For each such variable 𝑣, further inspect the tokens found in the string literals of

logging statements that are reachable from 𝑠. The word tokens here is deliberately
left vague; it could mean individual words found in string literals, or vectors of
words.

3. For each variable/token pair that we find, we compute a score that takes into account
1) the frequency of that pair in the program source code; and 2) how close they are
(in terms of the distance between the source code lines in which the variable/token
appear), on average.

4. We say that, for a logging statement 𝑠𝑙 and a non-logging statement 𝑠𝑟 , ⟨𝑠𝑙 , 𝑠𝑟 ⟩ ∈
relevance𝑃 if and only if 𝑠𝑙 contains tokens that score highly with respect to the
variables found in 𝑠𝑟 . Hence, we use the token-based heuristic to define the relation
relevance𝑃 with respect to a single program 𝑃.

We highlight that this token-based approach is to be used in combination with the
backwards program slicing described in Section 3.

Towards Log Slicing 7

Further Limitations. While this heuristic takes a step towards inspecting the semantic
content of log messages, rather than relying on shared variables, initial implementation
efforts have demonstrated the following limitations:

– It is difficult to choose an appropriate definition of a token. For example, should we
use individual words found in string literals used by logging statements, or should
we use sequences of words?

– Depending on the code base, there can be varying numbers of coincidental asso-
ciations between tokens and variables. For example, a developer may always use
the phrase “end transaction” near a use of the variable commit, but also near a
use of the variable query. The developer may understand “end transaction” as
being a phrase related to the variable commit and not to the variable query, despite
the accidental co-occurrence of the two variables.

– Suppose that a phrase like “end transaction” appears only once, and is close to
the variable commit. The developer may intend for the two to be related. However,
if we use a heuristic that combines the frequency of a pair with the distance between
the variable and token in the pair, a single occurrence will not score highly. Hence,
there are some instances of relevance that this heuristic cannot identify.

More Issues. In Section 3, we assumed that the mapping between log messages and the
corresponding logging statements that generated the log messages is known. However,
determining the log message that a given logging statement might generate can be
challenging, especially when the logging statement has a non-trivial structure. For
example, while some logging statements might consist of a simple concatenation of a
string and a variable value, others might involve nested calls of functions from a logging
framework. This calls for more studies on finding the correspondence between logging
statements and log messages.

Another key problem is the inconsistency of program slicing tools across pro-
gramming languages (especially weakly-typed ones such as Python). If the underlying
program slicing machinery made too many overapproximations, this would affect the
applicability of our proposed approach. Furthermore, the capability of the tools for
handling complex cases, such as nested function calls across different components, can
hinder the success of log slicing.

5 Related Work

Log Analysis. The relationship between log messages has also been studied in various
log analysis approaches (e.g., performance monitoring, anomaly detection, and failure
diagnosis), especially for building a “reference model” [12] that represents the normal
behavior (in terms of logged event flows) of the system under analysis. However, these
approaches focus on the problem of identifying whether log messages co-occur (that
is, one is always seen in the neighbourhood of the other) without accessing the source
code [6, 10, 13, 17, 18]. On the other hand, we consider the computational relationship
between log messages to filter out the log messages that do not affect the computation
of the variable values recorded in a given log message of interest.

8 J. H. Dawes, D. Shin, and D. Bianculli

Log partitioning. Log partitioning, similarly to log slicing, involves separating a log
into multiple parts, based on some criteria. In the context of process mining [1], log
partitioning is used to allow parallelisation of model construction. In the context of
checking an event log for satisfaction of formal specifications [3], slices of event logs
are sent to separate instances of a checking procedure, allowing more efficient checking
for whether some event log satisfies a formal specification written in a temporal logic.
Hence, again, log partitioning, or slicing, is used to parallelise a task. Finally, we
highlight that our log slicing approach could be used to generate multiple log slices to
be investigated in parallel by some procedure.

Program Analysis including Logging Statements. Traditionally, program analysis [14, 2]
ignores logging statements since they usually do not affect the computation of program
variables. Nevertheless, program analysis including logging statements has been studied
as part of log enhancement to measure which program variables should be added to
the existing logging statements [7, 15] and where new logging statements should be
added [16] to facilitate distinguishing program execution paths. Log slicing differs in
that it actively tries to reduce the contents of a log. Finally, Messaoudi et al. [8] have
proposed a log-based test case slicing technique, which aims to decompose complex test
cases into simpler ones using, in addition to program analysis, data available in logs.

6 Conclusion

In this short paper, we have taken the first steps in developing log slicing, an approach
to helping software engineers in their log-based debugging activities. Log slicing starts
from a log message that has been selected as indicative of a failure, and uses static
analysis of source code (whose execution generated the log in question) to throw away
log entries that are not relevant to the failure.

In giving an initial definition of the log slicing problem, we highlighted the central
problem of this work: defining a good relevance relation. The provisional definition of
relevance that we gave in Section 4.1 proved to be limited in that it required logging
statements to use variables when constructing their log message. To remedy the situation,
we introduced a frequency and proximity-based heuristic in Section 4.3. While this
approach could improve on the initial definition of relevance, it possessed various
limitations that we summarised.

Ultimately, as part of future work, we intend to investigate better definitions of
relevance between logging statements and non-logging statements. If we were to carry
on with the same idea for the heuristic (using frequency and proximity), future work
would involve 1) finding a suitable way to define tokens; 2) reducing identification of
coincidental associations between tokens and variables (i.e., reducing false positives);
and 3) attempting to identify associations between tokens and variables with a lower
frequency.

Acknowledgments. The research described has been carried out as part of the COSMOS
Project, which has received funding from the European Union’s Horizon 2020 Research
and Innovation Programme under grant agreement No. 957254.

Towards Log Slicing 9

References
1. van der Aalst, W.M.P.: Distributed process discovery and conformance checking. In: de Lara,

J., Zisman, A. (eds.) Fundamental Approaches to Software Engineering. pp. 1–25. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)

2. Agrawal, H., Horgan, J.R.: Dynamic program slicing. SIGPLAN Not. 25(6), 246–256 (jun
1990). https://doi.org/10.1145/93548.93576, https://doi.org/10.1145/93548.93576

3. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable offline
monitoring. In: Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification. pp. 31–47.
Springer International Publishing, Cham (2014)

4. Bushong, V., Sanders, R., Curtis, J., Du, M., Cerny, T., Frajtak, K., Bures, M., Tisnovsky,
P., Shin, D.: On matching log analysis to source code: A systematic mapping study. In: Pro-
ceedings of the International Conference on Research in Adaptive and Convergent Systems.
p. 181–187. RACS ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3400286.3418262, https://doi.org/10.1145/3400286.3418262

5. He, S., He, P., Chen, Z., Yang, T., Su, Y., Lyu, M.R.: A survey on automated log analysis for re-
liability engineering. ACM Comput. Surv. 54(6) (Jul 2021). https://doi.org/10.1145/3460345

6. Jia, T., Yang, L., Chen, P., Li, Y., Meng, F., Xu, J.: Logsed: Anomaly diagnosis through mining
time-weighted control flow graph in logs. In: 2017 IEEE 10th International Conference
on Cloud Computing (CLOUD). pp. 447–455. IEEE, IEEE, Honolulu, CA, USA (2017).
https://doi.org/10.1109/CLOUD.2017.64

7. Liu, Z., Xia, X., Lo, D., Xing, Z., Hassan, A.E., Li, S.: Which variables
should i log? IEEE Transactions on Software Engineering 47(9), 2012–2031 (2021).
https://doi.org/10.1109/TSE.2019.2941943

8. Messaoudi, S., Shin, D., Panichella, A., Bianculli, D., Briand, L.C.: Log-based slicing for
system-level test cases. In: Proceedings of the 30th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis. p. 517–528. ISSTA 2021, Association for Com-
puting Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3460319.3464824,
https://doi.org/10.1145/3460319.3464824

9. Mi, H., Wang, H., Zhou, Y., Lyu, M.R.T., Cai, H.: Toward fine-grained, unsupervised, scalable
performance diagnosis for production cloud computing systems. IEEE Transactions on Paral-
lel and Distributed Systems 24(6), 1245–1255 (2013). https://doi.org/10.1109/TPDS.2013.21

10. Nandi, A., Mandal, A., Atreja, S., Dasgupta, G.B., Bhattacharya, S.: Anomaly detection
using program control flow graph mining from execution logs. In: 2016 26nd ACM In-
ternational Conference on Knowledge Discovery and Data Mining (SIGKDD). pp. 215–
224. KDD ’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2939672.2939712

11. Schipper, D., Aniche, M., van Deursen, A.: Tracing back log data to its log statement: From
research to practice. In: 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). pp. 545–549 (2019). https://doi.org/10.1109/MSR.2019.00081

12. Shin, D., Bianculli, D., Briand, L.: PRINS: scalable model inference for component-based sys-
tem logs. Empirical Software Engineering 27(4), 87 (2022). https://doi.org/10.1007/s10664-
021-10111-4, https://doi.org/10.1007/s10664-021-10111-4

13. Tak, B.C., Tao, S., Yang, L., Zhu, C., Ruan, Y.: Logan: Problem diagnosis in the cloud using
log-based reference models. In: 2016 IEEE International Conference on Cloud Engineering
(IC2E). pp. 62–67 (2016). https://doi.org/10.1109/IC2E.2016.12

14. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (Jul 1984).
https://doi.org/10.1109/TSE.1984.5010248, https://doi.org/10.1109/TSE.1984.5010248

15. Yuan, D., Zheng, J., Park, S., Zhou, Y., Savage, S.: Improving software diag-
nosability via log enhancement. ACM Trans. Comput. Syst. 30(1) (Feb 2012).
https://doi.org/10.1145/2110356.2110360

10 J. H. Dawes, D. Shin, and D. Bianculli

16. Zhao, X., Rodrigues, K., Luo, Y., Stumm, M., Yuan, D., Zhou, Y.: Log20: Fully au-
tomated optimal placement of log printing statements under specified overhead thresh-
old. In: 2017 26th Symposium on Operating Systems Principles (SOSP). p. 565–581.
SOSP ’17, Association for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3132747.3132778

17. Zhao, X., Rodrigues, K., Luo, Y., Yuan, D., Stumm, M.: Non-Intrusive perfor-
mance profiling for entire software stacks based on the flow reconstruction prin-
ciple. In: 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16). pp. 603–618. USENIX Association, Savannah, GA (Nov 2016),
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao

18. Zhou, P., Wang, Y., Li, Z., Tyson, G., Guan, H., Xie, G.: Logchain: Cloud
workflow reconstruction & troubleshooting with unstructured logs. Computer Net-
works 175, 107279 (2020). https://doi.org/https://doi.org/10.1016/j.comnet.2020.107279,
https://www.sciencedirect.com/science/article/pii/S1389128619316731

