Article (Périodiques scientifiques)
RL/DRL Meets Vehicular Task Offloading Using Edge and Vehicular Cloudlet: A Survey
Liu, Jinshi; Ahmed, Manzoor; Mirza, Muhammad Ayzed et al.
2022In IEEE Internet of Things Journal
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
RL_DRL_Meets_Vehicular_Task_Offloading_Using_Edge_and_Vehicular_Cloudlet_A_Survey.pdf
Postprint Éditeur (4.49 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Vehicular task offloading; Reinforcement learning; Survey
Résumé :
[en] The last two decades have seen a clear trend toward crafting intelligent vehicles based on the significant advances in communication and computing paradigms, which provide a safer, stress-free, and more enjoyable driving experience. Moreover, emerging applications and services necessitate massive volumes of data, real-time data processing, and ultrareliable and low-latency communication (URLLC). However, the computing capability of current intelligent vehicles is minimal, making it challenging to meet the delay-sensitive and computation-intensive demand of such applications. In this situation, vehicular task/computation offloading toward the edge cloud (EC) and vehicular cloudlet (VC) seems to be a promising solution to improve the network’s performance and applications’ Quality of Service (QoS). At the same time, artificial intelligence (AI) has dramatically changed people’s lives. Especially for vehicular task offloading applications, AI achieves state-of-the-art performance in various vehicular environments. Motivated by the outstanding performance of integrating reinforcement learning (RL)/deep RL (DRL) to the vehicular task offloading systems, we present a survey on various RL/DRL techniques applied to vehicular task offloading. Precisely, we classify the vehicular task offloading works into two main categories: 1) RL/ DRL solutions leveraging EC and 2) RL/DRL solutions using VC computing. Moreover, the EC section-based RL/DRL solutions are further subcategorized into multiaccess edge computing (MEC) server, nearby vehicles, and hybrid MEC (HMEC). To the best of our knowledge, we are the first to cover RL/DRL-based vehicular task offloading. Also, we provide lessons learned and open research challenges in this field and discuss the possible trend for future research.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Liu, Jinshi
Ahmed, Manzoor
Mirza, Muhammad Ayzed
KHAN, Wali Ullah  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Xu, Dianlei
Li, Jianbo
Aziz, Abdul
Han, Zhu
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
RL/DRL Meets Vehicular Task Offloading Using Edge and Vehicular Cloudlet: A Survey
Titre traduit :
[en] RL/DRL Meets Vehicular Task Offloading Using Edge and Vehicular Cloudlet: A Survey
Date de publication/diffusion :
01 mars 2022
Titre du périodique :
IEEE Internet of Things Journal
eISSN :
2327-4662
Maison d'édition :
Institute of Electrical and Electronics Engineers
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 25 janvier 2023

Statistiques


Nombre de vues
106 (dont 0 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
148
citations Scopus®
sans auto-citations
134
citations OpenAlex
 
134
citations WoS
 
123

Bibliographie


Publications similaires



Contacter ORBilu