[en] While liquid crystal elastomers (LCEs) are ideal materials for soft-robotic actuators, filling the role of muscle and shape-defining material simultaneously, it is non-trivial to give them ground state shapes beyond simple sheets or fibers. Here tubular LCE actuators scalable to arbitrary length are produced using a continuous three-phase coaxial flow microfluidic process. By pumping an oligomeric precursor solution between inner and outer aqueous phases in a cylindrically symmetric nested capillary set-up, and by reducing the interfacial tension to negligible values using surfactants adapted to each phase, the tubular liquid flow is stabilized over distances more than 200 times the diameter or 2000 times the thickness. In situ photocrosslinking of the middle phase turns it into an LCE network that is flow-aligned by the shear gradient over the phase. The reversible actuation of the tubes upon heating yields a reduction of the interior space, pumping out enclosed fluid, and the relaxation upon cooling leads to the fluid being sucked back in. By moving a local heat source along the tube, it acts as a peristaltic pump. It is proposed that the tubes could, pending functionalization for light-triggered actuation, function as active synthetic vasculature in biological contexts.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
NAJIYA, Najiya ✱; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
POPOV, Nikolay ✱; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Jampani, Venkata Subba Rao; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Jozef Stefan Institute, Jamova 39, Ljubljana, 1000 Slovenia > Department of Condensed Matter Physics
LAGERWALL, Jan ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
Continuous Flow Microfluidic Production of Arbitrarily Long Tubular Liquid Crystal Elastomer Peristaltic Pump Actuators
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
C. Ohm, M. Brehmer, R. Zentel, Adv. Mater. 2010, 22, 3366.
S. W. Ula, N. A. Traugutt, R. H. Volpe, R. R. Patel, K. Yu, C. M. Yakacki, Liq. Cryst. Rev. 2018, 6, 78.
J. M. McCracken, B. R. Donovan, T. J. White, Adv. Mater. 2020, 32, 1906564.
M. Hussain, E. I. Jull, R. J. Mandle, T. Raistrick, P. J. Hine, H. F. Gleeson, Nanomaterials 2021, 11, 813.
H. Kim, J. Gibson, J. Maeng, M. O. Saed, K. Pimentel, R. T. Rihani, J. J. Pancrazio, S. V. Georgakopoulos, T. H. Ware, ACS Appl. Mater. Interfaces 2019, 11, 19506.
L. Hines, K. Petersen, G. Z. Lum, M. Sitti, Adv. Mater. 2017, 29, 1603483.
V. Jampani, R. Volpe, K. Reguengo de Sousa, J. Ferreira Machado, C. Yakacki, J. Lagerwall, Sci. Adv. 2019, 5, eaaw2476.
D. Mistry, S. D. Connell, S. Mickthwaite, P. B. Morgan, J. H. Clamp, H. F. Gleeson, Nat. Commun. 2018, 9, 5095.
M. Warner, E. M. Terentjev, Liquid Crystal Elastomers, Oxford University Press, Oxford, USA 2007.
M. E. McConney, A. Martinez, V. P. Tondiglia, K. M. Lee, D. Langley, I. I. Smalyukh, T. J. White, Adv. Mater. 2013, 25, 5880.
T. Guin, M. Settle, B. Kowalski, A. Auguste, R. Beblo, G. Reich, T. White, Nat. Commun. 2018, 9, 2531.
H. Aharoni, Y. Xia, X. Zhang, R. D. Kamien, S. Yang, Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 7206.
A. Kotikian, J. M. Morales, A. Lu, J. Mueller, Z. S. Davidson, J. W. Boley, J. A. Lewis, Adv. Mater. 2021, 33, 2101814.
M. Yao, B. Wu, X. Feng, S. Sun, P. Wu, Adv. Mater. 2021, 33, 2103755.
Y. Wang, J. Sun, W. Liao, Z. Yang, Adv. Mater. 2022, 34, 2107840.
H. Liu, H. Tian, X. Li, X. Chen, K. Zhang, H. Shi, C. Wang, J. Shao, Sci. Adv. 2022, 8, eabn5722.
M. Barnes, R. Verduzco, Soft Matter 2019, 15, 870.
T. Hessberger, L. B. Braun, F. Henrich, C. Müller, F. Gießelmann, C. Serra, R. Zentel, J. Mater. Chem. C 2016, 4, 8778.
J. Marshall, S. Gallagher, E. Terentjev, S. Smoukov, J. Am. Chem. Soc. 2014, 136, 474.
C. Ohm, N. Kapernaum, D. Nonnenmacher, F. Giesselmann, C. Serra, R. Zentel, J. Am. Chem. Soc. 2011, 133, 5305.
E. K. Fleischmann, F. R. Forst, R. Zentel, Macromol. Chem. Phys. 2014, 215, 1004.
Y. Wang, W. Liao, J. Sun, R. Nandi, Z. Yang, Adv. Mater. Technol. 2021, 7, 2100934.
D. J. Roach, C. Yuan, X. Kuang, V. C.-F. Li, P. Blake, M. L. Romero, I. Hammel, K. Yu, H. J. Qi, ACS Appl. Mater. Interfaces 2019, 11, 19514.
E.-K. Fleischmann, H.-L. Liang, N. Kapernaum, F. Giesselmann, J. Lagerwall, R. Zentel, Nat. Commun. 2012, 3, 1178.
V. S. R. Jampani, D. J. Mulder, K. R. De Sousa, A.-H. Gélébart, J. P. Lagerwall, A. P. Schenning, Adv. Funct. Mater. 2018, 28, 1801209.
A. Sharma, A. M. Stoffel, J. P. F. Lagerwall, J. Appl. Phys. 2021, 129, 174701.
F. Zha, T. Wang, M. Luo, J. Guan, Micromachines 2018, 9, 78.
S. Seok, C. D. Onal, K.-J. Cho, R. J. Wood, D. Rus, S. Kim, IEEE/ASME Trans. Mechatron. 2012, 18, 1485.
Y. Murase, S. Maeda, S. Hashimoto, R. Yoshida, Langmuir 2009, 25, 483.
Y. Fung, C. Yih, J. Appl. Mech. 1968, 35, 669.
R. L. Selinger, B. L. Mbanga, J. V. Selinger, in Emerging Liquid Crystal Technologies III, Vol. 6911, SPIE, Bellingham, WA 2008, pp. 82–86.
X. Liu, S.-K. Kim, X. Wang, J. Mater. Chem. B 2016, 4, 7293.
J.-a. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, Y. Yu, Nature 2016, 537, 179.
X. Qian, Q. Chen, Y. Yang, Y. Xu, Z. Li, Z. Wang, Y. Wu, Y. Wei, Y. Ji, Adv. Mater. 2018, 30, 1801103.
Q. He, Z. Wang, Y. Wang, A. Minori, M. T. Tolley, S. Cai, Sci. Adv. 2019, 5, eaax5746.
Z. Wang, Y. Zheng, Q. He, Y. Wang, S. Cai, Sci. Adv. 2020, 6, eabc0034.
L. B. Braun, T. Hessberger, E. Pütz, C. Müller, F. Giesselmann, C. A. Serra, R. Zentel, J. Mater. Chem. C 2018, 6, 9093.
J. Eggers, E. Villermaux, Rep. Prog. Phys. 2008, 71, 036601.
A. S. Monzel, L. M. Smits, K. Hemmer, S. Hachi, E. L. Moreno, T. van Wuellen, J. Jarazo, J. Walter, I. Brüggemann, I. Boussaad, E. Berger, R. M. Fleming, S. Bolognin, J. C. Schwamborn, Stem Cell Rep. 2017, 8, 1144.
C. Yakacki, M. Saed, D. Nair, T. Gong, S. Reed, C. Bowman, RSC Adv. 2015, 5, 18997.
P. E. Arratia, L.-A. Cramer, J. P. Gollub, D. J. Durian, New J. Phys. 2009, 11, 115006.
P.-G. d. Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, 2004 ed., Springer, Berlin, Heidelberg 2003.
S. Vats, M. Anyfantakis, L. Honaker, F. Basoli, J. Lagerwall, Langmuir 2021, 37, 13265.
M. Hashimoto, P. Garstecki, H. A. Stone, G. M. Whitesides, Soft Matter 2008, 4, 1403.
A. Utada, A. Fernandez-Nieves, H. Stone, D. Weitz, Phys. Rev. Lett. 2007, 99, 094502.
M. Rubinstein, R. H. Colby, Polymer Physics, Vol. 23, Oxford University Press, Oxford, New York 2003.
J. S. Biggins, M. Warner, K. Bhattacharya, Phys. Rev. Lett. 2009, 103, 037802.
H. Tian, Z. Wang, Y. Chen, J. Shao, T. Gao, S. Cai, ACS Appl. Mater. Interfaces 2018, 10, 8307.
H. Yang, J.-J. Liu, Z.-F. Wang, L.-X. Guo, P. Keller, B.-P. Lin, Y. Sun, X.-Q. Zhang, Chem. Commun. 2015, 51, 12126.
R. K. Shaha, A. H. Torbati, C. P. Frick, J. Appl. Polym. Sci. 2021, 138, 50136.
Q. He, Z. Wang, Y. Wang, Z. Wang, C. Li, R. Annapooranan, J. Zeng, R. Chen, S. Cai, Sci. Rob. 2021, 6, eabi9704.
A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, D. Weitz, Science 2005, 308, 537.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.