Landauer, R. Can capacitance be negative? Collect. Phenom. 2, 167–170 (1976).
Íñiguez, J., Zubko, P., Luk’yanchuk, I. & Cano, A. Ferroelectric negative capacitance. Nat. Rev. Mater. 4, 243–256 (2019). DOI: 10.1038/s41578-019-0089-0
Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008). DOI: 10.1021/nl071804g
Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016). DOI: 10.1038/nature17659
Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019). DOI: 10.1038/s41586-018-0855-y
Bratkovsky, A. M. & Levanyuk, A. P. Very large dielectric response of thin ferroelectric films with the dead layers. Phys. Rev. B 63, 132103 (2001). DOI: 10.1103/PhysRevB.63.132103
Bratkovsky, A. M. & Levanyuk, A. P. Depolarizing field and ‘real’ hysteresis loops in nanometer-scale ferroelectric films. Appl. Phys. Lett. 89, 253108 (2006). DOI: 10.1063/1.2408650
Ponomareva, I., Bellaiche, L. & Resta, R. Dielectric anomalies in ferroelectric nanostructures. Phys. Rev. Lett. 99, 227601 (2007). DOI: 10.1103/PhysRevLett.99.227601
Stengel, M., Vanderbilt, D. & Spaldin, N. A. Enhancement of ferroelectricity at metal-oxide interfaces. Nat. Mater. 8, 392–397 (2009). DOI: 10.1038/nmat2429
Islam Khan, A. et al. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011). DOI: 10.1063/1.3634072
Luk’yanchuk, I., Sené, A. & Vinokur, V. M. Electrodynamics of ferroelectric films with negative capacitance. Phys. Rev. B 98, 024107 (2018). DOI: 10.1103/PhysRevB.98.024107
Lynch, K. A. & Ponomareva, I. Negative capacitance regime in ferroelectrics demystified from nonequilibrium molecular dynamics. Phys. Rev. B 102, 134101 (2020). DOI: 10.1103/PhysRevB.102.134101
Walter, R., Prosandeev, S., Paillard, C. & Bellaiche, L. Strain control of layer-resolved negative capacitance in superlattices. npj Computational Mater. 6, 186 (2020). DOI: 10.1038/s41524-020-00459-4
Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 444, 679–682 (2006). DOI: 10.1038/nature05148
Aguado-Puente, P. & Junquera, J. Ferromagneticlike closure domains in ferroelectric ultrathin films: First-principles simulations. Phys. Rev. Lett. 100, 177601 (2008). DOI: 10.1103/PhysRevLett.100.177601
Das, S. et al. Local negative permittivity and topological phase transition in polar skyrmions. Nat. Mater. 20, 194–201 (2021). DOI: 10.1038/s41563-020-00818-y
Pavlenko, M. A., Tikhonov, Y. A., Razumnaya, A. G., Vinokur, V. M. & Lukyanchuk, I. A. Temperature dependence of dielectric properties of ferroelectric heterostructures with domain-provided negative capacitance. Nanomaterials 12, 75 (2021).
Wojdeł, J. C., Hermet, P., Ljungberg, M. P., Ghosez, P. & Íñiguez, J. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J. Phys. Condens. Matter 25, 305401 (2013). DOI: 10.1088/0953-8984/25/30/305401
García-Fernández, P., Wojdeł, J. C., Íñiguez, J. & Junquera, J. Second-principles method for materials simulations including electron and lattice degrees of freedom. Phys. Rev. B 93, 195137 (2016). DOI: 10.1103/PhysRevB.93.195137
SCALE-UP, an implementation of second-principles density functional theory. https://www.secondprinciples.unican.es/
Zubko, P., Stucki, N., Lichtensteiger, C. & Triscone, J. M. X-Ray diffraction studies of 180∘ ferroelectric domains in PbTiO3/SrTiO3 superlattices under an applied electric field. Phys. Rev. Lett. 104, 187601 (2010). DOI: 10.1103/PhysRevLett.104.187601
Zubko, P. et al. Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices. Nano Lett. 12, 2846–2851 (2012). DOI: 10.1021/nl3003717
Aguado-Puente, P. & Junquera, J. Structural and energetic properties of domains in PbTiO3/SrTiO3 superlattices from first principles. Phys. Rev. B 85, 184105 (2012). DOI: 10.1103/PhysRevB.85.184105
Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016). DOI: 10.1038/nature16463
Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019). DOI: 10.1038/s41586-019-1092-8
Baker, J. S. & Bowler, D. R. Polar morphologies from first principles: PbTiO3 films on SrTiO3 substrates and the p(2 × Λ) surface reconstruction. Adv. Theory Simul. 3, 2000154 (2020). DOI: 10.1002/adts.202000154
Damodaran, A. R. et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16, 1003–1009 (2017). DOI: 10.1038/nmat4951
Hadjimichael, M. et al. Metal–ferroelectric supercrystals with periodically curved metallic layers. Nat. Mater. 20, 495–502 (2021). DOI: 10.1038/s41563-020-00864-6
Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials. Oxford Classic Texts in the Physical Sciences (Clarendon Press, 1977).
Graf, M. & Íñiguez, J. A unified perturbative approach to electrocaloric effects. Commun. Mater. 2, 60 (2021). DOI: 10.1038/s43246-021-00167-6
Kittel, C. Theory of antiferroelectric crystals. Phys. Rev. 82, 729–732 (1951). DOI: 10.1103/PhysRev.82.729
Lu, H. et al. Probing antiferroelectric-ferroelectric phase transitions in PbZrO3 capacitors by piezoresponse force microscopy. Adv. Funct. Mater. 30, 2003622 (2020). DOI: 10.1002/adfm.202003622
Hong, Z. et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Lett. 17, 2246–2252 (2017). DOI: 10.1021/acs.nanolett.6b04875
Shafer, P. et al. Emergent chirality in the electric polarization texture of titanate superlattices. Proc. Natl Acad. Sci. USA 115, 915–920 (2018). DOI: 10.1073/pnas.1711652115
Souza, I., Íñiguez, J. & Vanderbilt, D. First-principles approach to insulators in finite electric fields. Phys. Rev. Lett. 89, 117602 (2002). DOI: 10.1103/PhysRevLett.89.117602
Stengel, M., Spaldin, N. A. & Vanderbilt, D. Electric displacement as the fundamental variable in electronic-structure calculations. Nat. Phys. 5, 304–308 (2009). DOI: 10.1038/nphys1185
Zhong, W. & Vanderbilt, D. Competing structural instabilities in cubic perovskites. Phys. Rev. Lett. 74, 2587 (1995). DOI: 10.1103/PhysRevLett.74.2587
Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004). DOI: 10.1038/nature02773