L. Zhu, Q. Wang, Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 45, 2937-2954 (2012).
K. M. Rabe, in Antiferroelectricity in Oxides: A Reexamination (John Wiley & Sons Ltd., 2013), chap. 7, pp. 221-244.
G. Wang, Z. Lu, Y. Li, L. Li, H. Ji, A. Feteira, D. Zhou, D. Wang, S. Zhang, I. M. Reaney, Electroceramics for high-energy density capacitors: Current status and future perspectives. Chem. Rev. 121, 6124-6172 (2021).
I. Burn, D. Smyth, Energy storage in ceramic dielectrics. J. Mater. Sci. 7, 339-343 (1972).
A. Chauhan, S. Patel, R. Vaish, C. R. Bowen, Anti-ferroelectric ceramics for high energy density capacitors. Materials 8, 8009-8031 (2015).
H. Gong, B. Miao, X. Zhang, J. Lu, Z. Zhang, High-field antiferroelectric-like behavior in uniaxially stretched poly (vinylidene fluoride-trifluoroethylenechlorotrifluoroethylene)-grafted-poly (methyl methacrylate) films with high energy density. RSC Adv. 6, 1589-1599 (2016).
L. Li, B. Zhou, J. Ye, W. Wu, F. Wen, Y. Xie, P. Bass, Z. Xu, L. Wang, G. Wang, Z. Zhang, Enhanced dielectric and energy-storage performance of nanocomposites using interface-modified anti-ferroelectric fillers. J. Alloys Compd. 831, 154770 (2020).
M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, C. S. Hwang, Thin HfxZr1-xO2 films: A new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4, 1400610 (2014).
M. Pešić, M. Hoffmann, C. Richter, T. Mikolajick, U. Schroeder, Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2. Adv. Funct. Mater. 26, 7486-7494 (2016).
L. Zhang, M. Liu, W. Ren, Z. Zhou, G. Dong, Y. Zhang, B. Peng, X. Hao, C. Wang, Z.-D. Jiang, W. Jing, Z.-G. Ye, ALD preparation of high-k HfO2 thin films with enhanced energy density and efficient electrostatic energy storage. RSC Adv. 7, 8388-8393 (2017).
S. J. Kim, J. Mohan, J. S. Lee, H. S. Kim, J. Lee, C. D. Young, L. Colombo, S. R. Summerfelt, T. San, J. Kim, Stress-induced crystallization of thin Hf1-xZrxO2 films: The origin of enhanced energy density with minimized energy loss for lead-free electrostatic energy storage applications. ACS Appl. Mater. Interfaces 11, 5208-5214 (2019).
S.-H. Yi, H.-C. Lin, M.-J. Chen, Ultra-high energy storage density and scale-up of antiferroelectric TiO2/ZrO2/TiO2 stacks for supercapacitors. J. Mater. Chem. A 9, 9081-9091 (2021).
B. Ma, D.-K. Kwon, M. Narayanan, U. B. Balachandran, Dielectric properties and energy storage capability of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film-on-foil capacitors. J. Mater. Res. 24, 2993-2996 (2009).
B. Ma, M. Narayanan, U. B. Balachandran, Dielectric strength and reliability of ferroelectric PLZT films deposited on nickel substrates. Mater. Lett. 63, 1353-1356 (2009).
M. Ye, Q. Sun, X. Chen, Z. Jiang, F. Wang, Effect of Eu doping on the electrical properties and energy storage performance of PbZrO3 antiferroelectric thin films. J. Am. Ceram. Soc. 94, 3234-3236 (2011).
K. Yao, S. Chen, M. Rahimabady, M. S. Mirshekarloo, S. Yu, F. E. H. Tay, T. Sritharan, L. Lu, Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1968-1974 (2011).
X. Hao, J. Zhou, S. An, Effects of PbO content on the dielectric properties and energy storage performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thin films. J. Am. Ceram. Soc. 94, 1647-1650 (2011).
Z. Hu, B. Ma, R. Koritala, U. Balachandran, Temperature-dependent energy storage properties of antiferroelectric Pb0.96La0.04Zr0.98Ti0.02O3 thin films. Appl. Phys. Lett. 104, 263902 (2014).
B. Peng, Q. Zhang, X. Li, T. Sun, H. Fan, S. Ke, M. Ye, Y. Wang, W. Lu, H. Niu, J. F. Scott, X. Zeng, H. Huang, Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv. Electron. Mater. 1, 1500052 (2015).
C. W. Ahn, G. Amarsanaa, S. S. Won, S. A. Chae, D. S. Lee, I. W. Kim, Antiferroelectric thin-film capacitors with high energy-storage densities, low energy losses, and fast discharge times. ACS Appl. Mater. Interfaces 7, 26381-26386 (2015).
B. Xu, J. Iniguez, L. Bellaiche, Designing lead-free antiferroelectrics for energy storage. Nat. Commun. 8, 15682 (2017).
H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang, S. Lan, Y. Zheng, J. Ma, L. Gu, Y. Shen, P. Yu, S. Zhang, L.-Q. Chen, Y.-H. Lin, C.-W. Nan, Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578-582 (2019).
J. Kim, S. Saremi, M. Acharya, G. Velarde, E. Parsonnet, P. Donahue, A. Qualls, D. Garcia, L. W. Martin, Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 369, 81-84 (2020).
Y. Z. Li, J. L. Lin, Y. Bai, Y. Li, Z. D. Zhang, Z. J. Wang, Ultrahigh-energy storage properties of (PbCa)ZrO3 antiferroelectric thin films via constructing a pyrochlore nanocrystalline structure. ACS Nano 14, 6857-6865 (2020).
J. Sigman, D. Norton, H. Christen, P. Fleming, L. Boatner, Antiferroelectric behavior in symmetric KNbO3/KTaO3 superlattices. Phys. Rev. Lett. 88, 097601 (2002).
H. M. Christen, E. D. Specht, S. S. Silliman, K. S. Harshavardhan, Ferroelectric and antiferroelectric coupling in superlattices of paraelectric perovskites at room temperature. Phys. Rev. B 68, 020101 (2003).
E. Bousquet, J. Junquera, P. Ghosez, First-principles study of competing ferroelectric and antiferroelectric instabilities in BaTiO3/BaO superlattices. Phys. Rev. B 82, 045426 (2010).
E. Glazkova, K. McCash, C.-M. Chang, B. Mani, I. Ponomareva, Tailoring properties of ferroelectric ultrathin films by partial charge compensation. Appl. Phys. Lett. 104, 012909 (2014).
P. Zubko, N. Stucki, C. Lichtensteiger, J.-M. Triscone, X-ray diffraction studies of 180° ferroelectric domains in PbTiO3/SrTiO3 superlattices under an applied electric field. Phys. Rev. Lett. 104, 187601 (2010).
A. Yadav, C. Nelson, S. Hsu, Z. Hong, J. Clarkson, C. Schleputz, A. Damodaran, P. Shafer, E. Arenholz, L. Dedon, D. Chen, A. Vishwanath, A. Minor, L. Chen, J. Scott, L. Martin, R. Ramesh, Observation of polar vortices in oxide superlattices. Nature 530, 198-201 (2016).
S. Das, Y. Tang, Z. Hong, M. A. P. Goncalves, M. McCarter, C. Klewe, K. Nguyen, F. Gomez-Ortiz, P. Shafer, E. Arenholz, V. Stoica, S.-L. Hsu, B. Wang, C. Ophus, J. F. Liu, C. T. Nelson, S. Saremi, B. Prasad, A. B. Mei, D. Schlom, J. Iniguez, P. Garcia-Fernandez, D. A. Muller, L. Q. Chen, J. Junquera, L. W. Martin, R. Ramesh, Observation of roomtemperature polar skyrmions. Nature 568, 368-372 (2019).
P. Zubko, J. C. Wojdeł, M. Hadjimichael, S. Fernandez-Pena, A. Sene, I. Luk'yanchuk, J.-M. Triscone, J. Iniguez, Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524-528 (2016).
M. A. P. Goncalves, C. Escorihuela-Sayalero, P. Garcia-Fernandez, J. Junquera, J. Iniguez, Theoretical guidelines to create and tune electric skyrmion bubbles. Sci. Adv. 5, eaau7023 (2019).
A. Y. Abid, Y. Sun, X. Hou, C. Tan, X. Zhong, R. Zhu, H. Chen, K. Qu, Y. Li, M. Wu, J. Zhang, J. Wang, K. Liu, X. Bai, D. Yu, X. Ouyang, J. Wang, J. Li, P. Gao, Creating polar antivortex in PbTiO3/SrTiO3 superlattice. Nat. Commun. 12, 2054 (2021).
Q. Li, V. A. Stoica, M. Paściak, Y. Zhu, Y. Yuan, T. Yang, M. R. McCarter, S. Das, A. K. Yadav, S. Park, C. Dai, H. J. Lee, Y. Ahn, S. D. Marks, S. Yu, C. Kadlec, T. Sato, M. C. Hoffmann, M. Chollet, M. E. Kozina, S. Nelson, D. Zhu, D. A. Walko, A. M. Lindenberg, P. G. Evans, L.-Q. Chen, R. Ramesh, L. W. Martin, V. Gopalan, J. W. Freeland, J. Hlinka, H. Wen, Subterahertz collective dynamics of polar vortices. Nature 592, 376-380 (2021).
A. K. Yadav, K. X. Nguyen, Z. Hong, P. Garcia-Fernandez, P. Aguado-Puente, C. T. Nelson, S. Das, B. Prasad, D. Kwon, S. Cheema, A. I. Khan, C. Hu, J. Iniguez, J. Junquera, L.-Q. Chen, D. A. Muller, R. Ramesh, S. Salahuddin, Spatially resolved steady-state negative capacitance. Nature 565, 468-471 (2019).
P. Aguado-Puente, J. Junquera, Structural and energetic properties of domains in PbTiO3/ SrTiO3 superlattices from first principles. Phys. Rev. B 85, 184105 (2012).
Q. Li, C. Nelson, S.-L. Hsu, A. Damodaran, L.-L. Li, A. Yadav, M. McCarter, L. Martin, R. Ramesh, S. V. Kalinin, Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling. Nat. Commun. 8, 1468 (2017).
P. Chen, X. Zhong, J. A. Zorn, M. Li, Y. Sun, A. Y. Abid, C. Ren, Y. Li, X. Li, X. Ma, J. Wang, K. Liu, Z. Xu, C. Tan, L. Chen, P. Gao, X. Bai, Atomic imaging of mechanically induced topological transition of ferroelectric vortices. Nat. Commun. 11, 1840 (2020).
S. Lisenkov, L. Bellaiche, Phase diagrams of BaTiO3/SrTiO3 superlattices from first principles. Phys. Rev. B 76, 020102 (2007).
S. Estandia, F. Sanchez, M. F. Chisholm, J. Gazquez, Rotational polarization nanotopologies in BaTiO3/SrTiO3 superlattices. Nanoscale 11, 21275-21283 (2019).
D. Peng, X. Yang, W. Jiang, Three-dimensional polarization vortex configuration evolution in compressed BaTiO3/SrTiO3 superlattice. J. Appl. Phys. 126, 244101 (2019).
A. Inselberg, The plane with parallel coordinates. Vis. Comput. 1, 69-91 (1985).
S. Liu, Y. Liu, T. Yang, Tailoring switching field of phase transition for enhancing energy-storage density of PLZST antiferroelectric thick films. J. Alloys Compd. 861, 158559 (2021).
C. Hou, W. Huang, W. Zhao, D. Zhang, Y. Yin, X. Li, Ultrahigh energy density in SrTiO3 film capacitors. ACS Appl. Mater. Interfaces 9, 20484-20490 (2017).
B. Ma, Z. Hu, R. E. Koritala, T. H. Lee, S. E. Dorris, U. Balachandran, PLZT film capacitors for power electronics and energy storage applications. J. Mater. Sci. Mater. Electron. 26, 9279-9287 (2015).
Z. Jiang, B. Xu, H. Xiang, L. Bellaiche, Ultrahigh energy storage density in epitaxial AlN/ScN superlattices. Phys. Rev. Mater. 5, L072401 (2021).
P. Zubko, N. Jecklin, N. Stucki, C. Lichtensteiger, G. Rispens, J.-M. Triscone, Ferroelectric domains in PbTiO3/SrTiO3 superlattices. Ferroelectrics 433, 127-137 (2012).
Y. Sun, S. Boggs, R. Ramprasad, The intrinsic electrical breakdown strength of insulators from first principles. Appl. Phys. Lett. 101, 132906 (2012).
J. F. Verweij, J. H. Klootwijk, Dielectric breakdown I: A review of oxide breakdown. Microelectronics J. 27, 611-622 (1996).
P. Chen, M. P. Cosgriff, Q. Zhang, S. J. Callori, B. W. Adams, E. M. Dufresne, M. Dawber, P. G. Evans, Field-dependent domain distortion and interlayer polarization distribution in PbTiO3/SrTiO3 superlattices. Phys. Rev. Lett. 110, 047601 (2013).
J. C. Wojdeł, P. Hermet, M. P. Ljungberg, P. Ghosez, J. Iniguez, First-principles model potentials for lattice-dynamical studies: General methodology and example of application to ferroic perovskite oxides. J. Phys. Condens. Matter 25, 305401 (2013).
P. Garcia-Fernandez, J. C. Wojdeł, J. Iniguez, J. Junquera, Second-principles method for materials simulations including electron and lattice degrees of freedom. Phys. Rev. B 93, 195137 (2016).
C. Escorihuela-Sayalero, J. C. Wojdeł, J. Iniguez, Efficient systematic scheme to construct second-principles lattice dynamical models. Phys. Rev. B 95, 094115 (2017).
J. C. Wojdeł, J. Iniguez, Ferroelectric transitions at ferroelectric domain walls found from first principles. Phys. Rev. Lett. 112, 247603 (2014).
J. A. Seijas-Bellido, C. Escorihuela-Sayalero, M. Royo, M. P. Ljungberg, J. C. Wojdeł, J. Iniguez, R. Rurali, A phononic switch based on ferroelectric domain walls. Phys. Rev. B 96, 140101 (2017).