[1] ADLER, R. J. and TAYLOR, J. E. (2007). Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York. MR2319516
[2] BERRY, M. V. (1977). Regular and irregular semiclassical wavefunctions. J. Phys. A 10 2083–2091. MR0489542
[3] BRANDOLINI, L., HOFMANN, S. and IOSEVICH, A. (2003). Sharp rate of average decay of the Fourier transform of a bounded set. Geom. Funct. Anal. 13 671–680. MR2006553 https://doi.org/10.1007/s00039-003-0426-7
[4] BREUER, P. and MAJOR, P. (1983). Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13 425–441. MR0716933 https://doi.org/10.1016/0047-259X(83)90019-2
[5] DIERICKX, G., NOURDIN, I., PECCATI, G. and ROSSI, M. (2023). Small scale CLTs for the nodal length of monochromatic waves. Comm. Math. Phys. 397 1–36. MR4538280 https://doi.org/10.1007/s00220-022-04422-w
[6] DOBRUSHIN, R. L. and MAJOR, P. (1979). Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 27–52. MR0550122 https://doi.org/10.1007/BF00535673
[7] FLORET, K. (1997). Natural norms on symmetric tensor products of normed spaces. Note Mat. 17 153–188. MR1749787
[8] GALERNE, B. (2011). Computation of the perimeter of measurable sets via their covariogram. Applications to random sets. Image Anal. Stereol. 30 39–51. MR2816305 https://doi.org/10.5566/ias.v30.p39-51
[9] GOLINSKII, L., MALAMUD, M. and ORIDOROGA, L. (2018). Radial positive definite functions and Schoenberg matrices with negative eigenvalues. Trans. Amer. Math. Soc. 370 1–25. MR3717972 https://doi.org/10.1090/tran/6876
[10] GORBACHEV, D. and TIKHONOV, S. (2019). Doubling condition at the origin for non-negative positive definite functions. Proc. Amer. Math. Soc. 147 609–618. MR3894899 https://doi.org/10.1090/proc/14191
[11] KRASIKOV, I. (2014). Approximations for the Bessel and Airy functions with an explicit error term. LMS J. Comput. Math. 17 209–225. MR3230865 https://doi.org/10.1112/S1461157013000351
[12] LEONENKO, N. (1999). Limit Theorems for Random Fields with Singular Spectrum. Mathematics and Its Applications 465. Kluwer Academic, Dordrecht. MR1687092 https://doi.org/10.1007/978-94-011-4607-4
[13] MAINI, L. (2024). Asymptotic covariances for functionals of weakly stationary random fields. Stochastic Process. Appl. 170 104297. MR4689941 https://doi.org/10.1016/j.spa.2024.104297
[14] MARINUCCI, D. and WIGMAN, I. (2014). On nonlinear functionals of random spherical eigenfunctions. Comm. Math. Phys. 327 849–872. MR3192051 https://doi.org/10.1007/s00220-014-1939-7
[15] NOTARNICOLA, M. (2021). Probabilistic limit theorems and the geometry of random fields. Ph.D. thesis, Univ. Luxembourg.
[16] NOTARNICOLA, M., PECCATI, G. and VIDOTTO, A. (2023). Functional convergence of Berry’s nodal lengths: Approximate tightness and total disorder. J. Stat. Phys. 190 Paper No. 97, 41. MR4587627 https://doi.org/10.1007/s10955-023-03111-9
[17] NOURDIN, I. and NUALART, D. (2020). The functional Breuer-Major theorem. Probab. Theory Related Fields 176 203–218. MR4055189 https://doi.org/10.1007/s00440-019-00917-1
[18] NOURDIN, I., NUALART, D. and TUDOR, C. A. (2010). Central and non-central limit theorems for weighted power variations of fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 46 1055–1079. MR2744886 https://doi.org/10.1214/09-AIHP342
[19] NOURDIN, I. and PECCATI, G. (2012). Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge Tracts in Mathematics 192. Cambridge Univ. Press, Cambridge. MR2962301 https://doi.org/10.1017/CBO9781139084659
[20] NOURDIN, I., PECCATI, G. and PODOLSKIJ, M. (2011). Quantitative Breuer-Major theorems. Stochastic Process. Appl. 121 793–812. MR2770907 https://doi.org/10.1016/j.spa.2010.12.006
[21] NOURDIN, I., PECCATI, G. and ROSSI, M. (2019). Nodal statistics of planar random waves. Comm. Math. Phys. 369 99–151. MR3959555 https://doi.org/10.1007/s00220-019-03432-5
[22] NUALART, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Probability and Its Applications (New York). Springer, Berlin. MR2200233
[23] NUALART, D. and PECCATI, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177–193. MR2118863 https://doi.org/10.1214/009117904000000621
[24] PECCATI, G. and VIDOTTO, A. (2020). Gaussian random measures generated by Berry’s nodal sets. J. Stat. Phys. 178 996–1027. MR4064212 https://doi.org/10.1007/s10955-019-02477-z
[25] ROSENBLATT, M. (1960). Independence and dependence. In Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II 431–443. Univ. California Press, Berkeley-Los Angeles, Calif. MR0133863
[26] SCHOENBERG, I. J. (1938). Metric spaces and completely monotone functions. Ann. of Math. (2) 39 811–841. MR1503439 https://doi.org/10.2307/1968466
[27] TAQQU, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 53–83. MR0550123 https://doi.org/10.1007/BF00535674
[28] TUDOR, C. A. (2013). Analysis of Variations for Self-Similar Processes: A Stochastic Calculus Approach. Probability and Its Applications (New York). Springer, Cham. MR3112799 https://doi.org/10.1007/978-3-319-00936-0