Article (Périodiques scientifiques)
Assessing the opportunity of combining state-of-the-art Android malware detectors
DAOUDI, Nadia; Allix, Kévin; BISSYANDE, Tegawendé François D Assise et al.
2022In Empirical Software Engineering, 28
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Combination_of_SOTA_malware_detectors_preprint.pdf
Preprint Auteur (1.52 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Android; Malware; Machine learning; Ensemble learning
Résumé :
[en] Research on Android malware detection based on Machine learning has been prolific in recent years. In this paper, we show, through a large-scale evaluation of four state-of-the-art approaches that their achieved performance fluctuates when applied to different datasets. Combining existing approaches appears as an appealing method to stabilise performance. We therefore proceed to empirically investigate the effect of such combinations on the overall detection performance. In our study, we evaluated 22 methods to combine feature sets or predictions from the state-of-the-art approaches. Our results showed that no method has significantly enhanced the detection performance reported by the state-of-the-art malware detectors. Nevertheless, the performance achieved is on par with the best individual classifiers for all settings. Overall, we conduct extensive experiments on the opportunity to combine state-of-the-art detectors. Our main conclusion is that combining state-of-theart malware detectors leads to a stabilisation of the detection performance, and a research agenda on how they should be combined effectively is required to boost malware detection. All artefacts of our large-scale study (i.e., the dataset of ∼0.5 million apks and all extracted features) are made available for replicability.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
DAOUDI, Nadia ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Allix, Kévin;  CentraleSupelec
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Assessing the opportunity of combining state-of-the-art Android malware detectors
Date de publication/diffusion :
décembre 2022
Titre du périodique :
Empirical Software Engineering
ISSN :
1382-3256
eISSN :
1573-7616
Maison d'édition :
Kluwer Academic Publishers, Pays-Bas
Volume/Tome :
28
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR11693861 - Characterization Of Malicious Code In Mobile Apps: Towards Accurate And Explainable Malware Detection, 2017 (01/06/2018-31/12/2021) - Jacques Klein
Organisme subsidiant :
FNR - Fonds National de la Recherche
University of Luxembourg - UL
SPARTA
Luxembourg Ministry of Foreign and European Affairs
Disponible sur ORBilu :
depuis le 11 janvier 2023

Statistiques


Nombre de vues
147 (dont 4 Unilu)
Nombre de téléchargements
164 (dont 4 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
3
citations OpenAlex
 
5
citations WoS
 
4

Bibliographie


Publications similaires



Contacter ORBilu