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Abstract Research on Android malware detection based on Machine learning
has been prolific in recent years. In this paper, we show, through a large-scale
evaluation of four state-of-the-art approaches that their achieved performance
fluctuates when applied to different datasets. Combining existing approaches
appears as an appealing method to stabilise performance. We therefore pro-
ceed to empirically investigate the effect of such combinations on the overall
detection performance. In our study, we evaluated 22 methods to combine
feature sets or predictions from the state-of-the-art approaches. Our results
showed that no method has significantly enhanced the detection performance
reported by the state-of-the-art malware detectors. Nevertheless, the perfor-
mance achieved is on par with the best individual classifiers for all settings.
Overall, we conduct extensive experiments on the opportunity to combine
state-of-the-art detectors. Our main conclusion is that combining state-of-the-
art malware detectors leads to a stabilisation of the detection performance,
and a research agenda on how they should be combined effectively is required
to boost malware detection. All artefacts of our large-scale study (i.e., the
dataset of ~0.5 million apks and all extracted features) are made available for
replicability.
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1 Introduction

Early 2021, an Antivirus provider has reported having flagged more than 1.4
million malware apps during the first quarter of 2021, which represents an
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increase of 298 998 malware compared to the same quarter of 2020
sky|[2021). Moreover, a recent investigation made by a security company has
reported that an Android malware app is published every eight seconds, indi-
cating that malware is growing at an alarming rate .

Due to its ability to learn automatically from input data, Machine Learning
techniques have been extensively leveraged to develop approaches for Android
malware detection (Arp et al|[2014} Onwuzurike et al.||[2019; Garcia et al|
2018} [Wu et al.[2019, 2012; [Fereidooni et al.|[2016} |Afonso et al|2015). In
the literature, several of such approaches produced detectors that were re-
ported to be highly effective, and each new publication claims to now achieve
state-of-the-art performance. In 2014, DREBIN has made
a breakthrough in Android malware detection by proposing an approach that
detects malware using a large variety of app features. Three years later, MA-
MADRoOID (Mariconti et al.|[2017)) has been proposed and has claimed to be
more generic and robust than DREBIN. Other approaches have followed the
same ongoing trend by reporting detection scores that are all above 90%. The
spread of Android malware, however, hints that the challenges of detection
remain intact for practitioners. This situation calls for a thorough revisita-
tion of Android malware detection literature. A first step in this direction is
to conduct independent evaluations of state-of-the-art malware detectors to
highlight limitations and opportunities for improvement.

When facing weak detectors (e.g., state-of-the-art approaches that are not
effective under all settings), an immediate solution could be to investigate their
combination, e.g., using Ensemble Learning . Ensemble Learning
has been evaluated in the literature of malware detection using some selected
features and ML algorithms (Yerima et al|[2015} [Zhang and Jin/[2016} [Zhao|
let al.|2018} Zhu et al.[2020; |Zhang et al.[2015). Researchers have then relied on
Ensemble Learning techniques to propose independent approaches for malware
detection. These approaches are developed by selecting a set of features (e.g.,
permission and intents (Idrees et al.[2017))) and a method to combine the base
learners (e.g., Majority Voting (Christianah et al.|[2020)). To date, however,
no study has considered combining existing state-of-the-art Android malware
detectors in an attempt to advance the research field in a clear and principled
manner. Unfortunately, this focus on proposing new detectors without first
thoroughly assessing and building on existing work impedes the progress of
the research domain.

This paper. Building on large-scale datasets and re-executing existing ap-
proaches, we empirically show that state-of-the-art Android malware detectors
yield performance results that significantly depend on the evaluation dataset.
Indeed, none of the studied approaches has been reported to reach the highest
prediction performance on all the evaluation settings. This finding suggests
that trusting a single approach in a real world setting is unrealistic. To over-
come this limitation, we investigate whether the combination of state-of-the-
art Android malware detectors can yield better detection performance. We
build on a recent study on the Reproducibility /Replicability of ML-based An-
droid malware detectors (Daoudi et al|2021b)) which has considered research
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works from 16 major venues in Machine Learning, Security, and Software En-
gineering. In this study, Daoudi et al.| (2021b]) were able to successfully repro-
duce/replicate four state-of-the-art malware detectors. These detectors will be
used as the basis for our work.

Our work assesses the impact of combining the best approaches from the
literature, each of which contributing with a specific way of modelling Android
apps. Specifically, DREBIN extracts eight types of string features from the
Manifest file and the DEX bytecode, including permissions, intents, hardware
components, and suspicious API calls. On the other hand, MAMADROID mod-
els the behaviour of the apps using Markov Chains representation of the ab-
stracted API calls. As for REVEALDROID (Garcia et al.[|2018)), it focuses on fea-
tures related to API usage, reflection, and native calls. Finally, MALSCAN (Wu
et al.|2019)) borrows methods from social networks analysis to detect malware.
This approach models the call graph of the app as a social network graph and
performs different centrality analyses. Each of the studied approaches relies on
an ML algorithm that performs best with its set of features since their authors
have already evaluated and configured them using the best hyper-parameters.
Such efforts need to be exploited to further advance Android malware de-
tection research. To this end, we set a research agenda to assess the value
of combining, with Ensemble Learning, the features sets or the predictions
proposed in state-of-the-art approaches. We rely on Ensemble Learning to
mitigate the dependence of individual approaches on the evaluation settings.
Our work evaluates the four state-of-the-art approaches on two large datasets
of over 197k and 265k apps and studies the impact of either combining their
feature sets or combining the detectors themselves using Ensemble Learning.

Overall, we make the following contributions:

— We conduct a comparative evaluation of four state-of-the-art Android mal-
ware detectors (+ variants) using the same experimental setup to identify
the best performing approach. The studied detectors are: DREBIN, MaA-
MADROID (two variants of the approach), REVEALDROID, MALSCAN (six
variants of the approach).

— We examine the similarities/difference in the malware detected by state-
of-the-art approaches.

— We investigate the impact of merging feature sets from state-of-the-art
Android malware approaches on the detection performance.

— We investigate the impact of combining predictions from state-of-the-art
malware detectors using 16 combination methods.

Our work has resulted in the following findings:

® The performance of state-of-the-art Android malware detectors is highly
dependent on the experimental dataset. None of the studied approaches
has reported the best detection performance on all the evaluation settings.

® Some families of malware are detected very accurately by some state-of-
the-art approaches, but almost completely escape detection of some other
approaches.
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® Combining features and predictions from state-of-the-art malware detec-
tors (i.e., using Bagging and Ensemble Selection) is promising to lever-
age the capabilities of the best detectors and maintain a stable detection
rate on all the evaluation settings.

2 Study Design

In this section we introduce the research questions, present the datasets,
overview the experimental setup and enumerate the state-of-the-art malware
detectors that are leveraged.

2.1 Research Questions

In previous works, |Allix et al.| (2016al) then Pendlebury et al. (2019) have
presented study results which suggest that literature evaluation of Android
malware detection approaches generally suffers from spatial and temporal bi-
ases. Most of the times, each approach is assessed only on a specific dataset,
with limited comparison to existing work. Thus, there is a missed opportunity
to definitively understand the contribution of each approach and eventually
build up on existing works for improved detection.

Given that each new approach claims to outperform others, a first step
towards addressing the biased comparison issues would be to undertake an
independent and fair assessment of state-of-the-art approaches in order to
compare their results under different settings:

— RQ1: Is there a state-of-the-art malware detector that outperforms all
others across all datasets?

To further investigate the similarities and differences between state-of-the-
art malware detectors, a possible direction would be to examine the similarities
and differences in the malware detected by these approaches.

— RQ2: To what extent do state-of-the-art approaches detect similar/differ-
ent malware?

In the literature, authors often insist on the engineering of a new feature
set, but do not generally investigate in detail the added value of their feature
set compared to previous approaches. We hypothesise that if each feature set
brings its own value, combining them should noticeably improve the detection
performance.

— RQ3: Does merging the feature sets from state-of-the-art approaches lead
to a high-performing malware detector in all the settings?

Another way of exploiting the combined value of different approaches would
be to consider each approach as a whole. Instead of combining feature sets
before classifier training, we can combine prediction results after training each
approach (i.e., feature set + algorithm) independently.
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— RQ4: Does combining predictions from state-of-the-art approaches lead to
a high-performing malware detector in all the settings?

Finally, we statistically compare the detection performance of state-of-the-
art approaches and the classifiers produced by the combination of features and
predictions:

— RQ5: Does combining feature sets or predictions from state-of-the-art ap-
proaches lead to classifiers that significantly outperform the original detec-
tors?

2.2 Dataset
Our study considers two main datasets, which are summarised in Table

Literature dataset This dataset is constructed by collecting app samples
used in the literatureﬂ to validate state-of-the-art malware detection approaches
(cf. Section . Apps in this dataset span from 2010 to 2018. Overall, the
literature dataset includes 43 819 malware and 153 616 benign apps. In our ex-
periments, we evaluate our classifiers not only on the whole literature dataset,
but also on each of its subsets separately (i.e., the dataset used for DREBIN,
for MAMADROID, for REVEALDROID, and for MALSCAN).

AndroZoo dataset This dataset is collected from the AndroZoo (Allix et al.
2016b) repository whose maintainers continuously crawl Android apps from
different sources (including Google Play, AppChina, etc.). We consider that
an app is labelled as benign if it has not been detected by any Antivirus engine
from VirusTotaﬂ Following up on previous work (Arp et al.|2014), we consider
an app to be a malware if it has been detected by at least two Antivirus
from VirusTotal. For this dataset we focused on recent apps createcﬂ in 2019
and 2020. Overall our AndroZoo dataset includes 78 002 malware samples and
187797 benign samples. Similarly, we also conduct our experiments on the
whole AndroZoo dataset as well as its subsets (i.e., 2019 and 2020 subsets).

2.3 Experimental setup

All experiments (to evaluate the literature approaches, the merged feature sets,
and the combinations of predictions) are performed on each of the collected
datasets. We consider two evaluation scenarios per experiment and per dataset,
following up on previous work (Pendlebury et al.|2019; |Allix et al.[2015)) which
highlighted biases in empirical evaluation of machine learning-based malware
detection:

1 Since some of these apps are not shared by their original authors, we rely on the repli-
cated datasets described in the reproduction study (Daoudi et al.[|2021b)

2 https://www.virustotal.com/
3 We consider the compilation dates
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Table 1: Dataset summary

Subsets Malicious apps Benign apps Total
DREBIN 5363 111592 116 955
Literature MAMADROID 30895 7756 38651
dataset REVEALDROID 18924 22480 41404
MALSCAN 12943 14038 26 981
Total** 43819 153616 197435
AndroZoo 2019 59256 122966 182222
dataset 2020 18746 64 831 83577
Total 78002 187797 265799

** The total is calculated after removing redundant apps

— Temporally-consistent: The classifiers are trained on old apps, and tested
on new apps (i.e., the dataset is split based on the apps’ creation dates).

— Temporally-inconsistent: the classification experiment does not take
into account the creation time of the apps (i.e., the dataset is shuffled
before the split into training, validation, and test sets)

In our experiments, each dataset is split into training (80%), validation
(10%), and test (10%). For the Temporally-inconsistent settings, we repeat
each experiment ten times after randomly shuffling and splitting the datasets.
As for the Temporally-consistent settings, we also repeat the experiments
ten times by randomly selecting 90% of the apps from the training, valida-
tion, and test splits (i.e., the training and the test contain the oldest and the
newest apps, respectively). For both settings we report an average detection
performance.

We rely on Recall, Precision, Fl-score, and the Accuracy to measure the
classification performance. In our evaluation, we use these metrics to refer to
the average detection scores since our experiments are repeated ten times. We
present the formulas of these metrics below:

TP
Precision = ————— 1
recision = s (1)
TP
Recall = 757N 2)

precision . recall
Fiscore = 2.

precision + recall

TP+TN (1)
TP+TN+FP+ FN
All the algorithms trained on the merged feature sets (c.f., Section

or trained to combine the predictions (c.f., Section [3.4]) are used with their
default parameters provided by the scikit-learn framewor

Accuracy =

4 https://scikit-learn.org
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2.4 Study subjects: literature detectors

Our work builds on four state-of-the-art Android malware detectors presented
at major venues. These approaches have been identified in a recent study (Daoudi
et al.|2021b) that assessed the reproducibility /replicability of Machine Learning-
based Android malware detection approaches in the literature. We have con-
sidered these malware detectors for two main reasons:

— Indeed, a tremendous number of malware detection papers are published in
the literature, but our study focuses on the best approaches with the most
significant contributions in the field. Thus, our study subjects are selected
among papers published in 16 top venues in Software Engineering, Security,
and Machine Learning: EMSE, TIFS, TOSEM, TSE, FSE, ASE, ICSE,
NDSS, S&P, Usenix Security, CCS, AsiaCCS, SIGKDD, NIPS, ICML, and
IJCAL

— In order to accurately and fairly assess the detection performance of the
studied approaches, they need to be reproducible. Specifically, our evalua-
tion results can be attributed to the original approaches only in the case
when the reproducibility of these detectors is verified and confirmed. In
the reproduction study from which we select our approaches (Daoudi et al.
2021b)), ten years of Android malware detection papers from major venues
have been considered. However, only four approaches have been success-
fully reproduced. Our study subjects are the only state-of-the-art malware
detectors whose reproducibility has been validated in the literature.

We present below a brief description of these approaches. We also repre-
sent in table [2[ a summary of the features and ML algorithms used by these
approaches and we refer the reader to the reproduction study, or the original
papers for further details.

2.4.1 DREBIN (Arp et al.||2014))

It trains a LinearSVC classifier using eight types of features that are extracted
from the DEX and the Manifest files: hardware components, requested permis-
sions, app components, filtered intents, restricted API calls, used permissions,
suspicious API calls, and network addresses.

2.4.2 MAMADROID (Mariconti et al.|2017)

For each app, it first generates a call graph with abstracted API calls to
then build a feature vector. MAMADROID proposes two variants to abstract
the APT calls: either by only considering their package name (MAMADROID
PACKAGE model), or by considering the first component of their package name
(MAMADROID FAMILY model). In both cases, the Markov Chain representa-
tion of the abstracted API calls is then used to create the feature vectors. The
two variants of the approach (i.e., MAMADROID FamiLy and MAMADROID
PACKAGE) rely on Random Forest (RF) classifier.
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2.4.8 REVEALDROID (Garcia et al||[2018)

It trains a LinearSVC classifier using three types of features: Android API
usage (Number of invocations of Android API methods and packages), Reflec-
tive, and Native Call features.

2.4.4 MALSCAN (Wu et al|2019)

It represents the call graph of the apps as a social network to perform central-
ity analysis. Six variants of this approach are proposed and they are all trained
using KNN algorithm. The type of the model is determined by the type of the
centrality measure: MALSCAN DEGREE, MALSCAN KATZ, MALSCAN CLOSE-
NESS, MALSCAN HARMONIC, MALSCAN AVERAGE (it uses as features the
average of the feature vectors from the four previous models) and MALSCAN
CONCATENATE (the feature vectors are the concatenation of the feature vectors
from MALSCAN DEGREE, MALSCAN KATZ, MALSCAN CLOSENESS, MALSCAN
HARMONIC).

Table 2: Study subjects

Features set ML algorithm
DREBIN hardware components, requested permis- LinearSVC
sions, app components, filtered intents, re-
stricted API calls, used permissions, suspi-
cious API calls, and network addresses

MaMaDroid Markov Chain representation of the ab- Random Forest
stracted API calls

RevealDroid Android API usage, Reflective, and Native LinearSVC
Call Features

MalScan Centrality analysis on the social network KNN

representation of the call graph

3 Study Results

To answer our research questions, we have conducted our experiments using
Literature dataset, AndroZoo dataset, and their subsets.

3.1 RQ1: Is there a state-of-the-art malware detector that outperforms all
others across all datasets?

Android malware detectors in the literature are usually evaluated using
different experimental setups and datasets. In this section, we aim to assess
the performance of the state-of-the-art malware detection approaches under
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consistent experimental conditions. Specifically, we evaluate the effectiveness
of the four state-of-the-art malware detectors (and their variants) using the
datasets described in Section 2.2 and under the experimental setup described
in Section [2.3] For conciseness, we use, for instance, LITTEMPINCONSIST to
refer to the experimental setup where we use a Literature dataset in a
temporally-inconsistent experiment. Table [3| describes our experimental
settings.

Table 3: Summary of our experimental setting
Temporally-inconsistent Temporally-consistent

Literature dataset LITTEMPINCONSIST LiTTEMPCONSIST
AndroZoo dataset ANDTEMPINCONSIST ANDTEMPCONSIST

Since we consider five Literature datasets and three AndroZoo datasets
(i.e., whole datasets and their subsets), the total number of our experimen-
tal settings reaches 16. In the remainder of this paper, we use “dataset” and
“setting” interchangeably.

We report the average F1 score for the considered malware detection ap-
proaches in the upper part of Table 4l We also present the Recall, Precision,
and Accuracy scores of our experiments in Table [7] Table [§] Table [0, and
Table [10] in the Appendix.

We observe that the performance of the classifiers varies considerably across
datasets. On the whole LITTEMPCONSIST, all the approaches have reported
detection scores that are significantly low, with a best F1 score of 0.44. This
result is consistent with the finding of Tesseract (Pendlebury et al.[[2019)
on a temporally-consistent setting. For the other datasets (i.e., Andro-
Zoo datasets and Literature subsets), the detection performance on the
temporally-consistent experiment is also generally lower than the perfor-
mance reported in the temporally-inconsistent experiment. The detection
performance on the whole LITTEMPCONSIST is much lower due to the compo-
sition of this dataset. We remind that the whole AndroZoo dataset contains
apps that span over two years (i.e., apps from 2019 and 2020). As for the whole
Literature dataset, it contains Android apps that are spanning over eight
years (i.e., apps from 2010 to 2018), which makes this dataset considerably
difficult for all the classifiers.

In the experiments involving Literature datasets, DREBIN yielded the
highest F1 score in nine out of ten experiments. DREBIN’s feature set seems
to be more suitable to detect the apps created before and until 2018, which is
demonstrated by the temporally-inconsistent and the temporally-consistent
experiments, respectively. Indeed, DREBIN has not outperformed the other
detectors only on the whole Literature dataset but also on its subsets cre-
ated in the sub-years of 2010-2018. As for the AndroZoo datasets, no ap-
proach has reported the highest detection performance in all the experiments.
Consequently, no specific feature set from the evaluated state-of-the-art ap-
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Table 4: The average F1 score reported by state-of-the-art approaches
versus the combination of features versus the combination of classifiers

Temporally inconsistent Temporally consistent
Literature AndroZoo Literature AndroZoo
dataset dataset dataset dataset

Wh Dr Rv Mm Ml | Wh 19 20 |Wh Dr Rv Mm Ml | Wh 19 20

DREBIN 0.92 0.94 0.97 0.98 0.96 | 0.96 0.96 0.97 ||0.44 0.87 0.94 0.92 0.86 | 0.85 0.94 0.82
Reveal 0.68 044 0.9 094 0.89|095 0.95 0.951 0.38 0.41 0.81 0.83 0.62|0.89 094 0.85
MaMaF 048 031 0.9 094 082|095 095 0971 0.19 0.32 0.88 0.89 0.64 | 0.92 0.98 0.86
MaMaP 0.71 048 094 0.95 0.95|0.96 0.97 0.98| 0.22 0.14 0.94 0.85 0.74 | 0.92 0.98 0.87

MalD 0.88 0.87 0.94 095 095|096 0.96 0.97| 0.33 0.7 0.86 0.79 0.87 |0.93 0.96 0.87
RQ1 MalH 0.89 0.89 095 0.96 0.96|0.97 0.96 0.971 0.33 0.7 0.89 0.83 0.88|0.93 096 0.87
MalK 0.89 09 095 096 0.95|096 0.96 0.97 1 0.36 0.69 0.89 0.81 087 | 0.9 095 0.86
MalCl 0.89 0.88 0.95 0.96 0.96 |0.97 0.96 0.97| 04 0.77 0.89 0.84 0.88|0.93 096 0.87
MalA 0.89 0.89 095 0.96 0.96|0.96 0.95 0.97 | 0.34 0.71 0.89 0.83 0.87 | 0.91 0.96 0.87
MalCo 0.89 0.89 095 0.96 096|096 096 097 034 0.7 0.89 0.83 0.87|0.91 096 0.87

LinearSVC  0.78 0.83 0.94 093 0.89 | 0.87 0.85 0.87 || 0.48 0.73 0.87 0.81 0.71 | 0.81 0.86 0.76
RF 091 092 097 0.97 097|098 0.98 098 0.38 0.85 0.79 0.77 0.86 | 0.93 0.98 0.87
KNN 0.86 0.83 092 0.95 091|094 094 0931 03 0.76 0.72 0.74 0.82|0.85 0.88 0.74
AdaBoost 0.86 0.86 0.97 0.96 0.95|0.96 0.95 0.97 1 0.45 0.91 0.95 0.9 0.810.93 097 0.86
Bagging 0.94 0.96 0.98 0.97 0.97|0.98 0.98 0.99|/0.49 0.85 094 0.86 0.85|0.94 0.98 0.87
GradBoosting 0.9 0.92 0.98 0.97 0.97|0.97 0.97 098 | 048 0.82 0.96 0.9 0.88|0.93 0.98 0.87

RQ3

MajorVote 0.92 0.92 0.96 0.97 0.97 [ 0.97 097 098 0.33 0.85 0.91 0.85 0.87|0.93 0.97 0.87
AvgProba 091 092 096 0.96 0.97|0.97 0.97 0.97 | 0.32 0.83 0.91 0.85 0.89 |0.94 097 0.87
AccWProba 091 092 096 096 0.97|0.97 0.97 0.97]| 032 0.84 0.91 0.85 0.89|0.94 097 0.87
F1WProba 091 0.91 096 096 0.97|0.97 097 097 0.33 0.81 0.91 0.85 0.89|0.94 0.97 0.87
MinProba 0.3 0.14 092 0.94 082|093 093 093] 012 0.0 0.63 0.62 0.38|0.83 096 0.79
MaxProba 0.83 0.81 0.86 0.93 0.86|0.94 094 0.95| 04 0.54 0.95 0.93 0.85|0.89 0.89 0.86
ProdProba 00 00 00 00 00|00 00 0.0 00 00 00 00 00|00 00 0.0
RQ4 StaPredSVM  0.93 0.93 0.97 0.97 0.96 | 0.96 0.96 0.97 || 0.33 0.82 0.95 0.87 0.85|0.85 0.94 0.83
StaProbSVM 0.94 0.95 0.97 0.97 0.98 | 0.97 0.97 0.98 || 0.39 0.84 0.92 0.84 0.9 [0.89 095 0.85
StaPredRF  0.92 0.93 0.97 0.97 0.97 | 0.97 0.97 0.97 |/ 0.34 0.79 0.94 0.88 0.85|0.85 0.94 0.83
StaProbRF 0.94 095 097 0.97 0.97|0.97 0.97 0.981 0.38 0.8 0.94 089 089 | 09 095 0.85
StaPredKNN 0.92 0.92 0.97 0.97 0.97 | 0.97 097 097/ 0.39 0.79 0.92 0.87 0.86|0.86 0.94 0.82
StaProbKNN 0.92 0.94 0.96 0.97 0.97|0.97 0.97 0.98| 042 08 0.92 083 09 | 0.9 094 087
StaPredMLP 0.93 0.93 0.97 097 097 |0.97 097 097|038 0.8 0.94 0.88 0.85|0.86 0.94 0.83
StaProbMLP 0.94 0.95 0.97 0.97 0.97 | 0.97 0.97 0.98 |/ 0.39 0.81 0.95 0.85 0.89 | 0.87 0.95 0.85
EnsemSelect 0.94 0.95 0.98 0.98 0.98 |0.98 0.98 0.98|/0.43 0.89 0.96 0.91 0.89 |0.94 0.98 0.88

‘Wh: Whole dataset, Dr: DREBIN dataset, Rv: REVEALDROID dataset, Mim: MAMADROID dataset,
MI: MALSCAN dataset, 19: 2019 dataset, 20: 2020 dataset

The cells highlighted in grey show the best detector for each dataset and for each RQ based on the F1
score before rounding

* We note that we have verified the standard deviation of the F1 scores over the ten runs of the experi-
ments, and our results showed that the F1 scores do not vary sensibly.

proaches consistently helps to detect the highest number of malware created
between 2019 and 2020.

We also observe that no approach has reported the highest detection per-
formance on all the datasets. Specifically, DREBIN has achieved the best F1
score in nine out of 16 experiments. MAMADROID PACKAGE is considered the
best approach in three experiments. As for MALSCAN CLOSENESS, MALSCAN
DEGREE, MALSCAN HARMONIC, and MAMADROID FAMILY, each of them has
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reported the highest F1 score on one dataset. In the seven experiments where
DREBIN has not reported the highest detection performance, the difference
in the F1 score between DREBIN and the best approach on each dataset
varies from 1 to 8 percentage points.

We further conduct a statistical test to compare the F1 scores reported
by the state-of-the-art classifiers in all the datasets. We rely on the non-
parametric Friedman test (Friedman|[1937) that is designed to compare mul-
tiple data groups. Our selection of this test is motivated by the fact that our
dataset of F1 scores does not follow a normal distribution. Additionally, pre-
vious studies (Perinettil|2016; [Parab and Bhalerao||2010; [Sheldon et al.||1996)
have recommended using the Friedman test to statistically compare more than
two datasets. Furthermore, [Demsar| (2006) have examined several statistical
tests to compare ML classifiers and advised to use the Friedman test when
comparing multiple classifiers on multiple datasets.

The null hypothesis states that state-of-the-art malware detectors have sta-
tistically equivalent detection performance. The Friedman test has reported a
p_value of 3.7578!, which means that the null hypothesis can be rejected.
This result shows that our classifiers do not have the same detection perfor-
mance. To conduct a pairwise comparison on our classifiers, we proceed with
the Nemenyi (Nemenyi [1963) Post-Hoc test. This test aims to identify which
classifiers have different detection performances after the null hypothesis of
the Friedman test is rejected. We represent the p-values for the different pairs
of classifiers in the sub-figure (a) of Figure

As shown in Figure|l| (a), many state-of-the-art malware detector pairs do
not have the same detection performance. For example, DREBIN’s perfor-
mance is not similar to that of five classifiers, including MAMADROID PACK-
AGE, which has outperformed it on six datasets with a maximum difference of
seven percentage points. This result confirms our observations that state-of-
the-art approaches do not perform equally in all the settings.

Overall, our results show that the performance of state-of-the-art Android
malware detectors is highly affected by the dataset used for the evaluation.
Also, none of the studied approaches has reported the best detection per-
formance in all the settings. Such finding motivates to further analyse the
similarities and differences of state-of-the-art approaches by examining the
malware they detect.

RQ1 answer: No state-of-the-art Android malware detector consistently
outperforms the others.

3.2 RQ2: To what extent do state-of-the-art approaches detect
similar/different malware?

In this section, we propose to examine the type of malware detected by
state-of-the-art approaches in order to inspect their similarities/differences and
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(a) p_values for RQ1 classifiers (b) p_values for RQ3 classifiers

DREBIN
LinearsvC

Reveal

MaMaF

MaMaP
MalscanD
MalscanH
AdaBoost

MalscanK
MalscanCL Bagging
MalscanA

GradBoosting
MalscanCO

2 £ £ g £ 8 s = z g 2 g
® ] < = © c o < <] =) =
g & 8 & 8 % 0 3 B 3
n & o g o g S © © 8
s = & 2 = =2 2 -] o -
= = = 2 = ¢ £ < k)

I

p>0.05
(c) p_values for RQ4 classifiers (d) p_values for RQ5 classifiers

MajorVote
AvgProba
AccWProba
F1WProba
MinProba
MaxProba
ProdProba
StaPredSVM
StaProbSVM
StaPredRF
StaProbRF
StaPredKNN
StaProbKNN
StaPredMLP
StaProbMLP
EnsemSelect

MalscanD
MalscanH

Malscank

MalscanCL

MalscanA
MalscanCO
Bagging

EnsemSelect

MajorVote
AvgProba
AccWProba
F1WProba
MinProba
MaxProba
ProdProba
StaPredSVM
StaProbSVM
StaPredRF
StaProbRF
StaPredKNN
StaProbKNN
MalscanD
MalscanH
MalscanK
MalscanCL
MalscanA
MalscanCO

StaPredMLP
StaProbMLP
EnsemSelect
EnsemSelect

Fig. 1: The p_values of the Nemenyi pairwise comparison of all the classifiers

assess whether some classifiers perform better at detecting specific malware
families. To this end, we first collect the detection reports for malware sam-
ples from VirusTotaﬂ Then, we leverage AVCLASS (Sebastian et al.|2016) to
process the detection reports and assign a unique family label to each malware
app. We infer the family label for malware apps in both the whole Litera-
ture dataset and the whole AndroZoo dataset. Overall, 642 and 204 unique
malware families are present in Literature dataset and AndroZoo dataset
respectively.

We start our investigation by identifying the family labels present in the
test sets. Specifically, since we repeat the experiments ten times, we gather the
family labels from the ten test subsets. Then, we merge these family labels to
identify the top families in the test sets on average. For each top family, we

5 www.virustotal.com
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investigate how many samples belonging to that family are correctly detected
by our approaches in the ten test splits on average.

We conduct our experiments on the whole Literature dataset and the
whole AndroZoo dataset in both Temporally consistent and Temporally
inconsistent settings. We select four top families from each setting and we
present them in Table [5| We also report the results for the top 20 families in
each setting in Table [[I] and Table [I2]in Appendix.

Table 5: Proportion of malware samples detected by state-of-the-art
approaches and belonging to four top families

Families # DREBIN Reveal MaMaF MaMaP MalD MalH MalK MalCl MalA MalCo

. dowgin 352 98.6 68.8 63.1 86.9 93.2 94.0 94.3 94.0 94.0 94.0
% airpush 214 86.4 57.0 6.1 72.4 87.4 91.6 90.2 91.1 91.6 90.7
% adwo 195 82.6 72.8 11.8 62.6 85.6 86.2 86.7 85.6 86.2 86.2
_;1 youmi 111 82.9 66.7 38.7 51.4 82.0 82.9 85.6 82.9 82.9 82.9
Jjiagu 408 77.2 64.0 0.0 0.2 0.7 10.3 0.7 0.7 19.9 19.9
é dnotua 303 5.0 5.0 0.3 11.2 94.4 2.6 94.1 94.1 2.6 2.6
E smsreg 136 94.1 7.9 36.0 52.2 57.4 66.9 63.2 63.2 69.1 69.1
s secapk 122 40.2 92.6 4.9 4.9 41.8 43.4 43.4 43.4 43.4 43.4
v secneo 69 84.1 98.6 0 98.6 79.7 58.0 79.7 79.7 78.3 78.3
% ewind 8 100.0 62.5 75.0 100.0 75.0 75.0 87.5 75.0 75.0 75.0
g datacollector 7 100.0 85.7 0.0 85.7 100.0 100.0 100.0 100.0 100.0 100.0
2 kuguo 6 83.3 83.3 0.0 66.7 66.7 66.7 66.7 66.7 66.7 66.7
~ hiddad 32 0.0 3.1 0 3.1 15.6 21.9 15.6 21.9 21.9 21.9
g joker 11 27.3 0 0 0 63.6 63.6 63.6 72.7 63.6 63.6
E emagsoftware 9 66.7 33.3 0 0 11.1 11.1 11.1 11.1 11.1 11.1
2 autoins 7 100.0 100.0 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

The entries in bold show the best detector for each malware family

We observe that some state-of-the-art approaches detect some families in
similar proportions. For instance, DREBIN and some MALSCAN variants de-
tect the same number of malware from youmi family in the LITTEMPINCON-
SIST setting. Similarly, REVEALDROID and MAMADROID PACKAGE detect
the same proportion of apps from secneo family in the ANDTEMPINCONSIST
setting. Besides, compared to the other techniques, some approaches seem
more efficient at detecting specific families. For example, the secapk family
is effectively detected by REVEALDROID in the LITTEMPCONSIST setting. In
ANDTEMPCoONSIST, DREBIN is the approach that detects the highest pro-
portion of malware from emagsoftware family.

Our results show that some state-of-the-art approaches share similarities
since they detect specific families in similar proportions. Moreover, our clas-
sifiers also exhibit differences in their detected malware. Specifically, some
approaches are more efficient than others at detecting some malware families.
These insights combined with the finding from the previous RQ motivate to
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combine knowledge from the state-of-the-art approaches (i.e., feature sets or
predictions) to improve or stabilise the detection performance.

RQ2 answer: Some families are detected very accurately by some state-
of-the-art approaches but almost completely escape the detection of some
other approaches. The vast majority of families are not accurately detected
by all the approaches.

3.3 RQ3: Does merging the feature sets from state-of-the-art approaches
lead to a high-performing malware detector in all the settings?

In this section, we investigate whether merging features from Android mal-
ware detectors has an added value on the detection performance. Specifically,
we aim to assess whether such a method can lead to high detection scores inde-
pendently of the dataset. In Section we have considered an approach as a
whole (i.e., feature set + algorithm). In this experiment, we consider only the
set of features proposed by each detector, and we merge them to create a single
set of features. This latter is then used to train an ML algorithm to construct
a new malware detector. Since the studied state-of-the-art approaches rely on
different ML algorithms, we train the merged feature set using the same algo-
rithms. Thus, we construct three malware detectors using LinearSVC, Random
Forest, and K-Nearest Neighbour, and we train them with the merged feature
set. Moreover, we also assess the detection performance of three additional ML
algorithms:

— AdaBoost (Freund and Schapire|[1997)), which fits a series of base classifiers
(e.g., Decision Tree) on the dataset such that each classifier focuses more
on the incorrect predictions made by the previous classifier. This method
assigns higher weights to the incorrectly predicted samples in order to
enhance their prediction by the subsequent classifiers.

— Bagging (Breiman|1996)), which trains a series of base classifiers on random
subsets of the dataset and aggregates their predictions.

— GradientBoosting (Friedman|2001), which fits a series of base classifiers
on the dataset in order to improve the prediction performance. Each clas-
sifier is trained to minimise the prediction errors of the previous classifier
using the Gradient descent algorithm.

We again conduct our experiments under various experimental setups sim-
ilarly to RQ1 (cf. Section . We report the F1 scores of our experiments in
the middle part of Table [d] We also present the Recall, Precision, and Accu-
racy values of our evaluation in Table [7] Table 8] Table [0} and Table[I0]in the
Appendix.

We observe that the six malware detectors that are trained with the merged
feature set also report detection performance that vary across datasets. Specif-
ically, the whole LITTEMPCONSIST is still considered as the most difficult
dataset since the highest F1 score reported by these classifiers is 0.49. On the
2020 ANDTEMPINCONSIST, the highest F1 score has reached a value of 0.99.
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Compared to the other algorithms trained on the merged feature set, Bag—
ging reports the highest F1 score in 11 out of 16 experiments. For Gradient-
Boosting and AdaBoost, they achieve the best detection score in four and one
experiment respectively. In the five experiments where Bagging has not re-
ported the highest detection scores, the difference in the F1 score between this
detector and the best approaches reaches a maximum value of six percentage
points.

We also compare the detection performance of these classifiers using the
Friedman test. The p_value of the test is 8.857 !, which indicates that the
classifiers trained on the merged feature set do not have the same detection
performance. We conduct the Nemenyi test and report its results in the sub-
figure (b) of Figure

We observe that Bagging has a different detection performance than that of
the other classifiers including those that have outperformed it on five datasets.
Overall, our results show that none of the classifiers trained on the merged
feature set has reported the highest detection performance on all the datasets.

RQ3 answer: Merging features from state-of-the-art malware detectors
does not produce a high performing classifier in all the settings.

3.4 RQA4: Does combining predictions from state-of-the-art approaches lead
to a high-performing malware detector in all the settings?

Following up on the findings of RQ3, we hypothesise that the performance
of state-of-the-art approaches is brought by the right association between fea-
ture sets and learning algorithms. Therefore, we investigate the possibility to
exploit the combined value of detectors via combining their independent pre-
dictions. To that end, we consider Ensemble Learning and study its impact
on the detection performance. In our experiment, we consider the detectors
trained in RQ1 (cf. Section as base learners for Ensemble Learning, and
we examine whether the combination of their predictions produces a high-
performing malware detector on all the datasets.

Among the many ways of combining model predictions, which are com-
monly referred to as Ensemble Learning in the literature (Sagi and Rokach
2018; |[Dong et al.||2020), we consider the following cases:

— Majority Voting, where an app is considered as malware if it is detected
by the majority of the classifiers (i.e., in our case at least 6 out of the 10
classifiers). Otherwise it is predicted as benign.

— Average Probability, which represents the average of the probability ﬁ
scores given by the ten classifiers in the prediction of maliciousness. An
app is predicted as malware if this Average probability is over 0.5.

6 The probability of prediction is a score returned by the classifiers. It is between 0 and 1
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— Accuracy Weighted Probability, where the probabilities of each classi-
fier are weighted according to their Accuracy metric. An app is predicted
as malware if the weighted Probability for malware class is higher than the
weighted Probability for benign class.

— F1 Weighted Probability, where the probabilities of each classifier are
weighted according to their F1 metric. An app is predicted as malware
if the weighted Probability for malware class is higher than the weighted
Probability for benign class.

— Min Probability, which represents the minimum score among the prob-
ability scores given by the ten classifiers. An app is predicted as malware
if this Min probability is over 0.5.

— Max Probability, which represents the maximum score among the prob-
ability scores given by the ten classifiers. An app is predicted as malware
if this Max probability is over 0.5.

— Product Probability, which represents the product of the probability
scores given by the ten classifiers in the prediction of maliciousness. An
app is predicted as malware if this Product Probability is over 0.5.

— Stacking Prediction (Wolpert||1992), where the predictions of each clas-
sifier are used to train a binary meta-classifier. We evaluated the Stack-
ing method using four meta-classifiers: SVM, RF, KNN, and Multi-Layer
Perception (MLP), with three hidden layers of 32, 64, and 128 neurons,
respectively. The final predictions of this method are given by the meta-
classifier.

— Stacking Probability, where the prediction probabilities of each classi-
fier are used to train a binary meta-classifier. Similarly, we evaluated Stack-
ing Probability using four meta-classifiers: SVM, RF, KNN, and Multi-
Layer Perception (MLP), with the same architecture as in Stacking Pre-
diction.

— Ensemble Selection, where the probabilities of each classifier are weighted
according to its overall performance on specific metrics (i.e., Fl-score, Re-
call, ...). Since such a performance must be determined beforehand, we use
a validation dataset that serves to iterativelym infer the weights for each
classifier (Caruana et al.|2004]).

Experimental results with the described Ensemble Learning techniques are
provided in the lower part of Table[d] Again, we provide the detailed scores in
Table [7} Table [8] Table[d] and Table [I0]in the Appendix.

We observe that the detection performance still varies significantly across
datasets: Min Probability sees the most important variation of 84 percentage
points (0.12 for the whole LITTEMPCONSIST to 0.96 for 2019 ANDTEMPCON-
s1sT). The difficulty of the whole LITTEMPCONSIST is also confirmed when
combining the predictions since the highest F1 score reported in that dataset
is 0.43.

The evaluation results for the 16 prediction combination methods show
that none of these methods has reported the highest F1 score on all the

7 In our experiment, we fix the number of iterations to 5000
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datasets. Specifically, Ensemble Selection is the best technique in 12 ex-
periments. Stacking Probability with SVM achieves the highest F1 score in
three experiments. As for Max Probabilities, it outperformed the others on
one dataset. When Ensemble Selection is not the highest performing clas-
sifier, the difference in F1 score between Ensemble Selection and the best
method is at most two percentage points.

We again conduct the Friedman test to compare the detection performance
of the Ensemble Learning classifiers. The test reports a p_value of 1.427249,
which confirms that these classifiers do not have the same detection perfor-
mance. We then proceed with the Nemenyi test and report its results in the
sub-figure (c) of Figure

The sub-figure shows that the classifiers used to combine the predictions
do not perform similarly. Specifically, the detection performance of Ensem-
ble Selection is not similar to that of all the evaluated classifiers, including
Max Probabilities and Stacking Probability with SVM, which have out-
performed it on four datasets. Our results show that none of the Ensemble
Learning classifiers has yielded the highest detection performance on all the
datasets.

RQ4 answer: Combining predictions from state-of-the-art approaches
does not produce a classifier that outperforms the others on all the
datasets.

3.5 RQ5: Does combining feature sets or predictions from state-of-the-art
approaches lead to classifiers that significantly outperform the original
detectors?

In this section, we aim to compare the detection performance of the state-
of-the-art classifiers and the best methods to combine the features and the
predictions. The evaluation of the state-of-the-art malware detectors (c.f., Sec-
tion showed that no approach has outperformed the others on all the
datasets. For example, DREBIN has reported the highest F1 score in nine
out of 16 experiments, but other approaches have remarkably outperformed
it on the AndroZoo datasets. In Section [3.3] we have assessed the added
value of the merged feature set using six classifiers. Our results showed that
Bagging achieved the highest F1 score in 11 out of 16 experiments. On the
DREBIN LiTTEMPCONSIST dataset, AdaBoost has outperformed Bagging
with 6 percentage points. With the combination of predictions experiments, we
have observed the same pattern: No Ensemble Learning method has reported
the highest F1 score in all the settings. For example, Ensemble Selection
achieved the best detection scores in 12 experiments, but other methods have
outperformed it in four evaluation experiments. However, the difference in F1
score between Ensemble Selection and the best approaches in these four
experiments is at most two percentage points.
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Before proceeding with the statistical test, we first compare the detection
scores of the best state-of-the-art malware detectors with those reported by
the combination methods in RQ3 and RQ4. Specifically, we select from each
RQ the combination method that has most often outperformed the others. For
RQ3, we select Bagging as the best classifier trained with the merged feature
set. As for RQ4, Ensemble Selection is considered the best method to com-
bine the predictions. We refer to Table[d]to compare the detection performance
of these two methods with that of the best state-of-the-art classifiers on each
dataset.

Overall, Bagging has increased the detection performance in nine experi-
ments. The increase in the F1 score is at most two percentage points except
for the whole LITTEMPCONSIST where it has reached five percentage points.
This classifier has also decreased the F1 score in four experiments by one,
two, six, and one percentage point, respectively. In the remaining three ex-
periments, Bagging has reported the same detection performance as the best
state-of-the-art approaches. As for Ensemble Selection, it has increased the
detection performance by at most two percentage points in 11 experiments.
This method has also reported the same detection performance as the best ap-
proaches in three experiments and decreased the F1 score by one percentage
point in two experiments.

Neither Bagging nor Ensemble Selection has remarkably increased the
detection performance of state-of-the-art malware detectors. While it has en-
hanced the F1 score by five percentage points on one dataset, Bagging has also
decreased the F1 score by six percentage points on one dataset. For Ensemble
Selection, despite improving the F1 score in 11 experiments, this improve-
ment is at most two percentage points. Nevertheless, Ensemble Selection
has generally maintained the highest detection performance of state-of-the-art
malware detectors independently of the dataset since it has maintained the
least performance gap with the best classifiers on all the datasets.

To validate our observations, we conduct the Friedman test on the F1 scores
reported by the state-of-the-art classifiers, Bagging and Ensemble Selection.
Since the p_value of the test is 5.42717%, we conduct the Nemenyi test and
report our results in the sub-figure (d) of Figure

As shown in the sub-figure, the detection performance of both Bagging
and Ensemble Selection is different than that of the state-of-the-art classi-
fiers. Moreover, the p_value of the test that compares Bagging and Ensemble
Selection is greater than 0.5, which means that we failed to reject the null
hypothesis. Our results suggest that there is insufficient evidence to affirm that
the detection performance of these two classifiers is different.

To sum up, both Bagging and Ensemble Selection have generally main-
tained the highest detection performance of the state-of-the-art approaches
independently of the datasets.
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RQ5 answer: Despite not improving the detection performance overall,
combining the features or the predictions from state-of-the-art approaches
(with Bagging and Ensemble Selection respectively) produces classifiers
that maintain the best detection scores independently of the experimental
datasets.

4 Discussion

The literature of Android malware detection lavishes with a huge number
of malware classifiers. Each approach aims to capture malware samples by
proposing a set of features that is compiled to approximately represent app
behaviour. In this study, we consider state-of-the-art approaches published in
top venues, and we perform an independent evaluation of their performance.
Our evaluation dataset includes a diverse set of apps, spanning across a decade
(2010-2020) of app development. Our aim is to challenge the classifiers with
diverse samples. We further executed experiments where dataset selections
are temporally-consistent (in contrast with typical random sampling), in
order to assess malware classifiers’ ability to cope with emerging malware.
Overall, considering all experimental scenarios, the results show that none of
the studied approaches stands out across all settings.

In this section, we discuss an important insight from our study: while
combining different approaches does not systematically improve the achievable
performance, we note that it can help maintain a high performance across all
settings.

4.1 Ensuring high detection performance across datasets

Our study shows that malware detectors have significant variability in perfor-
mance from one dataset to another. Furthermore, no state-of-the-art malware
detector could outperform all others in all settings. These results raise ques-
tions about the characterisation of the added-value of each studied approach
as well as its suitability for deployment in production.

In an attempt to build a malware classifier that exploits the added-value of
all studied classifiers, we have investigated two main approaches: merge of all
feature sets and combination of classifiers’ predictions. Our experiments show
that Bagging and Ensemble Selection have reported promising results: the
yielded classifier generally achieves, in all scenarios, a detection score that
is as good as the best score reported by individual approaches. Therefore,
these combination methods ensure that the highest detection performance is
stabilised independently of the dataset.

Overall, the observed results further stress the need to consider large-scale
and diverse datasets to limit the biases when evaluating Android malware
classification approaches.
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4.2 Hypothetic reasons behind the failure of Ensemble Learning to
outperform the state of the art

Generally, Ensemble Learning methods aim to enhance the detection perfor-
mance of the base learners. In our study, however, these methods did not help
to outperform the state of the art, although they have provided a detection
performance stability across datasets. In the best case, Bagging and Ensemble
Selection methods have increased the highest F'1 score reported by the base
learners by five and two percentage points, respectively.

From Table [d] we observe that there is still room to improve the state of
the art, in particular when the experiments are performed in a temporally-
consistent manner. Yet, our experiments show that combining feature sets
or predictions from these state-of-the-art classifiers does not lead to the hoped
improvement. Below we enumerate potential reasons why combining the state
of the art has not led to a classifier that surpasses all individual approaches:
@ There is a significant overlap of false-negatives in state-of-the-art
classifications: We hypothesise that combining state-of-the-art approaches
could not enhance the detection performance due to the presence of malware
apps that are actually ”difficult to detect“ for all the approaches. Specifically,
the malware that has escaped the detection of the best approaches could not be
detected by the other approaches either. To verify our hypothesis, we examine
the pairwise overlap of False Negatives (FNs) for the best detector and each
of the other detectors considered in RQ1 on average. We provide in Figure [2]
the distribution of the FNs overlap for the whole datasets. We also present in
Table [6] the number of FNs overlap for the best detector and each of the other
classifiers.

Table 6: The average number of overlapping FNs for the best detector and
each of the other detectors on the whole datasets
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Best Approach DREBIN DREBIN MalCl MalD
DREBIN - - 148 625
Reveal 289 1127 190 659
MaMaF 356 1388 248 709
MaMaP 289 1262 192 688

MalD 201 512 237 -

MalH 200 1075 234 648
MalK 193 653 227 699
MalCl 200 548 - 679
MalA 200 1063 225 661

MalCo 199 1063 229 658
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Fig. 2: The distribution of the average number of overlapping FNs for the
best detector and each of the other approaches in the whole datasets

We observe that there is a significant overlap of FNs in all the datasets. This
overlap ranges from 32% in LITTEMPCONSIST to 100% in ANDTEMPCONSIST.
These results suggest that malware apps that are ”difficult to detect” for the
best detector, in a given scenario, are also challenging for the other classifiers:
such apps therefore escape the detection despite Ensemble Learning.

We also inspect the families of the overlapping FNs from the first data splits
in order to identify the major families that are difficult to detect. Specifically,
we identify the top five families of the overlapping FNs for the best approach
and each detector in the whole datasets. We represent the distribution of the
number of malware in the top families in Figure

The results in Figure[3]show that many overlapping FNs do not belong to a
known family (i.e., “SINGLETON"). We note that the label “SINGLETON”
generated by AVCLASS, groups the malware that could not be attributed to
any family. The overlap of these samples exceeds 500 malware, which shows
that they are indeed difficult to detect. Regarding the known families, we
observe that “fakeapp”, “jiagu”, “secapk”, and “dnotua” represent the families
with the highest number of overlapping FNs. Overall, inspecting how these
samples differ from the other TPs belonging to the same families might help
design new approaches that can detect the escaped malware.

@ Temporally-consistent experiments are challenging:

In Table [d] we observe that the best combination results are achieved in
the temporally-inconsistent experiments. Moreover, we have seen in Sec-
tion that Ensemble Selection has decreased the detection performance
of the original classifiers in two experiments which are both temporally-
consistent. Furthermore, the individual approaches themselves have some-
how reported a poor detection performance especially for the Literature datasets
(cf. Section . For the whole LITTEMPCONSIST, we have shown that all
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Fig. 3: The distribution of the number of overlapping FNs’ from the top five
families in the whole datasets

the state-of-the-art classifiers report F1 scores that are below 0.5. Since these
classifiers make mistakes more often, their combination could not offer any im-
provements, and has even resulted in a slight decrease of the performance. We
note that our results are in line with previous studies (Pendlebury et al.|[2019;
Allix et al.[2015]) in which the authors show that the performance of malware
detectors is significantly decreased in a temporally-consistent setting.
The limited performance reported on the temporally-consistent exper-
iments can be explained by the evolution of Android malware and the emer-
gence of new malware families. Indeed, Android malware is evolving fast, and
new families can exhibit previously-unknown behaviours. In the temporally-
consistent experiments, the test dataset is likely to contain malware belong-
ing to families that were unseen in the training dataset. In the temporally-
inconsistent experiments, this situation is possible, but less likely due to the
randomness of the split. Given that the training is supposed to characterise
maliciousness, if the training set is not representative of the different families,
the model will not generalise to samples in the test set, which would lead to
poor detection performance.
® The diversity of the feature sets is limited: The 10 studied detector
variants each leverage a different feature set. In the whole ANDTEMPINCON-
SIST dataset, we have found that the overall number of features across all
studied approaches surpasses 19 Million features. This huge number of fea-
tures could have suggested that, altogether, state-of-the-art approaches have
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sufficient information to correctly predict malware apps. Unfortunately, our ex-
periments show that even merging all the features set to train a single machine
learning algorithm does not lead to capturing all malware samples. We thus
hypothesise that the overall feature set is not more representative (i.e., does
dot capture more relevant information) than individual feature sets proposed
by different approaches. It is indeed plausible that the different feature sets
are actually redundant across approaches, with respect to malicious behaviour
characterisation. This raises a concern in the literature on the added-value of
ever-renewed feature sets using the same types of analyses.

Recently, researchers have started to investigate novel ways to represent
Android apps (Daoudi et al.|[2021c} |Sun et al.|2021; Huang and Kao| [2018;
Ding et al[|2020). In particular, the feature engineering process, which was
largely manual, has been tasked to be resolved via deep learning. To that
end, artefacts from the app package (e.g., the DEX file, Manifest, etc.) can
be processed (e.g., via image representation) to be fed to neural networks
for automatic features extraction. Such alternative features may help improve
malicious behaviour characterisation.

@ Classification algorithms leveraged in our study may have limited
capabilities: The studied approaches rely on three common classification al-
gorithms: Linear SVM, RF, and KNN. We further relied on these same al-
gorithms and three others to train classifiers with merged feature sets (c.f.,
Section , resulting in limited performance improvement. We hypothesise
that these algorithms may be unsuitable for individually processing the va-
riety of feature types (e.g., Permissions, the representation of the apps call
graphs as social networks, as Markov Chains, ...), leading to poor detection
performance improvement.

® The combination methods may not be suitable: We have investi-
gated the impact of combining state-of-the-art malware detectors using 16
Ensemble Learning methods. While these combination methods have, at best,
maintained the highest detection performance of the base learners, they could
not generally help to catch the escaped malware. We hypothesise that we may
have not been able to identify a relevant combination method for leveraging
and enhancing the power of each approach when used in conjunction with oth-
ers. More sophisticated Ensemble Learning techniques may lead to different
results in future work.

® AV labels used in our study may be noisy (Hurier et al.|[2016}
Salem et al.[2021;|Xu et al.|[2021)): Android malware datasets are generally
created using labels from AV engines or online services such as VirusTotal]
Antivirus engines have been used to label most of the apps in our datasets
as malware or benign. Since the AV engines may have different classification
decisions, their use can result in a noisy dataset.

Researchers usually consider an app as benign when it is not flagged by
any antivirus. In order to label an app as malware, a threshold of antivirus
agreements needs to be defined. Specifically, the malicious label is attributed

8 https://www.virustotal.com
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to the apps that are detected by a number of antivirus engines that is equal to
or above the specified threshold. Some researchers choose a higher threshold
value in order to increase the likelihood that the apps are truly malware.
Other researchers prefer to decrease the threshold value so that the “grey”
malware are also included in the dataset. While the second strategy can indeed
help to learn from the “difficult” malware, it can results in including False
Positive labels in the ground-truth dataset. Our experiments use datasets,
from different sources, which are compiled using different strategies. This may
have introduced noise that is challenging to estimate.

4.3 Threats-to-validity

The results and findings of our study are subject to some threats to validity.
In this section, we enumerate these threats and explain how we attempted to
alleviate their impact. First, since the generalisability of our conclusions highly
depends on the evaluation dataset, we have considered two large datasets of
Android apps to extend the validity of our findings. The literature dataset
has been used to evaluate Android malware detectors in the literature, and
it includes over 197K apps. We have also removed the duplicated apps in the
whole literature dataset to avoid evaluation biases and comply with the re-
cent recommendations about sample duplication (Zhao et al[/2021). As for
the AndroZoo dataset, it contains over 265K samples that we have collected
from AndroZoo (Allix et al.|2016b)) repository. Moreover, apps in our datasets
span from 2010 to 2020, which helps to thoroughly assess the performance of
the studied approaches. Furthermore, we have also included the Literature and
AndroZoo subsets in our evaluation to diversify our settings. Second, we study
the possibility of combining state-of-the-art malware detectors. Since Android
malware detection literature is prolific, selecting the evaluated subjects is not
straightforward. To eliminate any selection bias, papers from 16 major venues
in Software Engineering, Security, and Machine Learning have been consid-
ered. Third, the implementations of the evaluated approaches might also bias
our results. To mitigate this threat, we have considered the approaches that
have been reported to be reproducible in the literature (Daoudi et al.|2021b)).
We relied on reproducible malware detectors to ensure that our results are
valid and reflect the detection performance of the original approaches. Finally,
the validity of our findings might be affected by the methods used to com-
bine the evaluated approaches. We have mitigated this threat by considering
a total of 22 combination methods: six methods to combine the feature set
and 16 methods for the predictions. We have also repeated our experimental
evaluations ten times to mitigate potential overfitting. Moreover, we have con-
ducted statistical tests to compare the detection performance of the evaluated
classifiers in order to validate our findings.
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5 Related Work

Our study relates to the research direction that has put special effort on eval-
uating and building on published work, which is presented in Section We
also review the use of Ensemble Learning in Android malware detection in

Section5.2

5.1 Assessment of Existing work

Researchers have started long ago to invest in reviewing existing work on
malware detection. A survey (Rossow et al.|2012) has been conducted to assess
the methodological rigour and prudence of 36 malware execution papers and
has stressed the need for the community to ensure better handling of the
datasets.

The use of the most recent training labels from VirusTotal has been shown
to artificially inflate the detection performance of malware detectors (Miller
et al.[2016]). A temporal label consistency constraint has then been introduced
to ensure that the training labels are temporally precedent to the evaluation
samples.

Ten sources of biases have been identified based on the revision of 30 papers
from top-tier security venues (Arp et al.|2020)). These biases can affect the
results reported in machine learning based computer and network security
research. A set of recommendations that include data collection, labelling,
model design, and learning have then been proposed to mitigate such pitfalls.

In Android malware detection, the evaluation results reported in the liter-
ature have been carefully scrutinised and have been shown to be affected by
temporal and spatial biases (Pendlebury et al.|2019; Allix et al.|[2015)). For
instance, Tesseract (Pendlebury et al.[2019) has demonstrated that the per-
formance of DREBIN and MaMaDroid is highly affected by these two biases.
Similarly, it has been demonstrated that the 10-fold cross-validation evalua-
tion method can positively and artificially inflate the evaluation results (Allix
et al.[2016al).

Recently, an in-depth study (Daoudi et al.|[2021a) has been conducted on
DREBIN to analyse its inner working beyond its detection scores.

5.2 Ensemble Learning for Android malware detection

Due to its promising results in several domains, Ensemble Learning methods
have attracted the attention of researchers to develop techniques to curb the
spread of Android malware. Existing work has explored the use of Ensemble
Learning with some selected features and ML algorithms. To the best of our
knowledge, we are the first to investigate the use of Ensemble Learning with
state-of-the-art Android malware detectors.

Random Forest is an Ensemble Learning algorithm that trains a set of
Decision Tree classifiers as base learners. The class that is predicted by most
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of the base learners is selected as the decision output of the Random For-
est (Breiman|2001). This algorithm has been used both as base learner (Zhao|
let al.|[2018; Zhao et al|[2019 Dhalaria and Gandotral[2020) and as an Ensem-
ble Learning method (Yerima et al.||2015; |Alam and Vuong [2013; Zhang and
for Android malware detection. For example, a total of 179 static
features that include APT calls, (Linux/Android) commands, and Permissions
are extracted and fed to a Random Forest Ensemble Learner (Yerima et al)
2015). This same approach is re-used by augmenting the features set with
semantics-based features extracted from the sinks and sources flows
. RF has been combined with KNN as base Learners to predict
malware using sensitive API Calls from a small dataset of 1044 apps
. Probabilities of predictions from RF and KNN have been weighted
with 0.6 and 0.4 respectively to form the final decision. One year later, the
same approach was slightly modified by adding the Permissions to the features
set (Zhao et al.2019).

Other methods of Ensemble Learning have also been evaluated. Stacking
refers to training a meta model on the predictions of other based learners. Lo-
gistic Regression has been used as a Stacking algorithm to combine the output
of Random Forest, SVM, and KNN algorithms that are trained using features
from AndroMD datasetﬂ (Dhalaria and Gandotral 2020). MuViDA
is a multi-view malware detection approach that is based on clus-
tering followed by Stacking using Random Forest algorithm. SEDMDroid is
a Stacking Ensemble method that relies on Multi-Layer Perceptrons as base
learners and four types of features: Permissions, permission-rate, monitoring
system events sensitive APIs, and data flow information .
Stacking has also been used with neural networks base learners and Dalvik
instructions to predict malware (Zhang et al.||[2015). Support Vector Machine
algorithm has been used to assemble the prediction output of Naive Bayes
classifiers (Palumbo et al|[2017). Mlifdect (Wang et al|[2017) is an Ensemble
Learning approach that predicts an app as malware if the sum of probabilities
of its base learners is above a predefined threshold.

Assembling the prediction of the base learners has also been investigated
using Average, Maximum, Product of probabilities, and Majority Vote with
features that include permissions, Standard OS and Android commands, and
API-related features (Yerima et al|[2014). Majority Voting has been lever-
aged to assemble classifiers trained with permission features (Christianah et al.
@D, and with the combination of permissions and source code features (Milo-
sevic et al. . Soft voting has been used to combine the output of a Decision
Tree, a Deep Neural Network, and an LSTM classifier that are trained using
API calls, API frequency, and API sequence features. Another study has used
Genetic algorithms to select Deep Belief Neural Networks base learners that
have their predictions assembled using the majority voting (Wang et al.[[2020)).

9 https://www.kaggle.com/meghnadhalaria/andromd
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6 Conclusion

The literature of Android malware detection is prolific. Nevertheless, the ex-
pectation gap between the promising research results and the severe spread
of malware suggests that our community needs to revisit the evaluation of
the promise of state-of-the-art approaches. In this work, we contribute with a
large-scale evaluation of four state-of-the-art malware detectors published at
major venues, using two datasets of over 197k and 265k apps. We confirm pre-
vious results in the literature, which found that the performance of malware
detectors is highly dependent on the dataset used in the evaluation. Particu-
larly, no approach has reported the best detection results on all the settings,
which casts doubts on the usability and the validity of the studied approaches
in real-world settings.

In an attempt to stabilise the detection performance across all datasets, we
have investigated the use of Ensemble Learning methods. Our results show that
Bagging and Ensemble Selection methods are promising and can generally
maintain the best detection scores independently of the dataset. To further
facilitate future studies, we make available to the research community the
extracted features (for 462k apps) following the approaches of ten detector
variants.

7 Data availability

The datasets used in the present study are available in our repository:
https://github.com/Trustworthy-Software/Combination-malware-detectors
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10 Appendix

Table 7: Evaluation of the state-of-the-art approaches versus the
combination of features versus the combination of classifiers on the whole
Literature and AndroZoo datasets

Literature whole dataset

AndroZoo whole dataset

Temporally- Temporally- Temporally- Temporally-
inconsistent consistent inconsistent consistent
R P F1 A|R P F1 AR P F1 A|R P F1 A
DREBIN 0.91 0.93 0.92 0.96|0.64 0.34 0.44 0.64|0.95 0.98 0.96 0.98|0.76 0.98 0.85 0.92
Reveal 0.55 0.87 0.68 0.88|0.51 0.3 0.38 0.63|0.92 0.99 0.95 0.97]0.82 0.98 0.89 0.94
MaMaF 0.33 0.9 0.48 0.84|0.16 0.23 0.19 0.7 |0.91 0.99 095 0.97|0.86 1 0.92 0.96
MaMaP 0.56 0.97 0.71 0.9 |0.28 0.18 0.22 0.57|0.96 0.97 0.96 0.98(0.89 0.96 0.92 0.96
MalD 0.89 0.87 0.88 0.95|0.51 0.25 0.33 0.55|0.96 0.97 0.96 0.98| 0.9 0.97 0.93 0.96
RQ1 MalH 0.89 0.88 0.89 0.95|0.42 0.27 0.33 0.62|0.96 0.97 0.97 0.98| 0.9 0.96 0.93 0.96
MalK 09 0.88 0.89 0.95|0.54 0.27 0.36 0.58[0.95 0.97 0.96 0.98|0.86 0.96 0.9 0.95
MalCl 0.9 0.88 0.89 0.95[0.56 0.31 0.4 0.62[0.97 0.97 0.97 0.98| 0.9 0.96 0.93 0.96
MalA 0.9 0.89 0.89 0.95[0.44 0.28 0.34 0.63[0.95 0.96 0.96 0.97]|0.87 0.96 0.91 0.95
MalCo 0.9 0.89 0.89 0.95[0.44 0.28 0.34 0.63[0.96 0.97 0.96 0.98]|0.86 0.96 0.91 0.95
LinearSVC 0.87 0.72 0.78 0.88| 0.7 0.38 0.48 0.65|0.92 0.82 0.87 0.92|0.83 0.8 0.81 0.89
RF 0.87 0.96 0.91 0.96|0.49 0.31 0.38 0.64|0.97 0.99 0.98 0.99(0.88 0.99 0.93 0.96
RQ3 KNN 0.84 0.88 0.86 0.94|0.43 0.23 0.3 0.56|0.94 0.94 094 0.96|0.81 0.9 0.85 0.92
AdaBoost 0.83 0.89 0.86 0.94|0.52 0.39 0.45 0.72|0.93 0.98 0.96 0.97|0.88 0.99 0.93 0.96
Bagging 0.93 0.95 0.94 0.97|0.58 0.42 0.49 0.73|0.97 0.99 0.98 0.99|0.88 1 '0.94 0.96
GradBoosting 0.86 0.94 0.9 0.96|0.57 0.42 0.48 0.73(0.94 0.99 0.97 098|087 1 0.93 0.96
MajorVote 0.89 0.94 0.92 0.96|0.39 0.29 0.33 0.66|0.96 0.99 0.97 0.98|0.87 1 0.93 0.96
AvgProba 09 092 091 0.96| 0.4 0.27 0.32 0.63[0.97 0.98 0.97 0.98| 0.9 0.99 0.94 0.97
AccWProba 09 092 091 096| 0.4 0.27 0.32 0.63|0.97 0.98 0.97 0.98| 0.9 0.99 0.94 0.97
F1WProba 0.9 0.92 091 0.96|0.42 0.27 0.33 0.61[0.97 0.98 0.97 0.98| 0.9 0.99 0.94 0.97
MinProba 0.18 099 0.3 0.82/0.07 0.63 0.12 0.78/0.87 1 0.93 0.96]| 0.7 1 0.83 0.91
MaxProba 0.98 0.72 0.83 091|093 0.26 04 0.39|0.99 0.9 094 0.96|0.92 0.85 0.89 0.93
ProdProba 00 00 00 07800 075 00 07800 06 00 0.71|00 0.7 0.0 0.71
RQ4 StaPredSVM 0.93 0.92 0.93 0.97[0.56 0.24 0.33 0.51[0.95 0.98 0.96 0.98|0.76 0.98 0.85 0.92
StaProbSVM 0.94 0.95 0.94 0.97|0.68 0.28 0.39 0.54 [0.97 0.98 0.97 0.99]|0.82 0.98 0.89 0.94
StaPredRF 0.92 0.93 0.92 0.97|0.57 0.25 0.34 0.52|0.95 0.98 0.97 0.98]0.76 0.98 0.85 0.92
StaProbRF 094 0.93 0.94 0.97(0.72 0.26 0.38 0.49 ([0.96 0.98 0.97 0.98|0.83 0.99 0.9 0.95
StaPredKNN 0.92 0.93 0.92 0.97|0.65 0.28 0.39 0.55|0.96 0.98 0.97 0.98]0.76 0.98 0.86 0.92
StaProbKNN 0.92 0.92 0.92 0.97|0.71 0.3 0.42 0.56 [0.96 0.98 0.97 0.98]0.83 0.98 0.9 0.94
StaPredMLP 0.93 0.93 0.93 0.97|0.65 0.27 0.38 0.53|0.96 0.98 0.97 0.98|0.76 0.98 0.86 0.92
StaProbMLP 0.94 0.94 0.94 0.97[0.72 0.27 0.39 0.5 [0.96 0.98 0.97 0.98]|0.78 0.98 0.87 0.93
EnsemSelect 0.92 0.96 0.94 0.97]0.48 0.39 0.43 0.71]0.97 0.99 0.98 0.99(/0.89 1 0.94 0.97

The cells highlighted in grey show the best detector for each dataset and for each RQ based on the F1 score before

rounding
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Table 8: Evaluation of the state-of-the-art approaches versus the
combination of features versus the combination of classifiers on the 2019 and
2020 AndroZoo datasets

AndroZoo 2019 dataset

AndroZoo 2020 dataset

Temporally- Temporally- Temporally- Temporally-

inconsistent consistent inconsistent consistent
R P F1 A|R P F1 AR P F1 A | R P F1 A
DREBIN 0.95 0.98 0.96 0.98[0.96 0.92 0.94 0.96|0.97 0.97 0.97 0.98|0.71 0.98 0.82 0.93
Reveal 0.92 0.99 0.95 0.97]0.95 0.93 0.94 0.96|0.92 0.99 0.95 0.98|0.74 0.99 0.85 0.94
MaMaF 0.9 0.99 095 097|097 0.99 0.98 0.99/0.94 1 097 0.99]0.76 1 0.86 0.95
MaMaP 0.96 0.98 0.97 0.98(0.98 0.98 0.98 0.99|0.97 0.99 0.98 0.99|0.77 1 '0.87 0.95
MalD 0.96 0.97 0.96 0.98(0.98 0.94 0.96 0.97|0.96 0.97 0.97 0.99|0.78 0.99 0.87 0.95
RQ1 MalH 0.96 0.96 0.96 0.97]0.98 0.95 0.96 0.98|0.97 0.97 0.97 0.99|0.78 0.98 0.87 0.95
MalK 0.95 0.97 0.96 0.98(0.97 0.93 0.95 0.97|0.96 0.97 0.97 0.99|0.78 0.97 0.86 0.94
MalCl 0.96 0.97 0.96 0.98(0.98 0.95 0.96 0.97|0.97 0.97 0.97 0.99|0.78 0.98 0.87 0.95
MalA 0.96 0.95 0.95 0.97|0.97 0.94 0.96 0.97|0.96 0.97 0.97 0.98|0.78 0.98 0.87 0.95
MalCo 0.96 0.96 0.96 0.97|0.97 0.95 0.96 0.97|0.97 0.97 0.97 0.99|0.78 0.98 0.87 0.95
LinearSVC 0.92 0.79 0.85 0.89|0.94 0.8 0.86 0.9 [0.91 0.85 0.87 0.94]0.68 0.86 0.76 0.9
RF 0.96 0.99 0.98 0.98(0.98 0.97 0.98 0.98|0.97 0.99 0.98 0.99|0.77 1 0.87 0.95
RQ3 KNN 0.94 094 0.94 0.96|0.94 0.83 0.88 0.92/0.93 0.92 0.93 0.97|0.63 0.88 0.74 0.9
AdaBoost 0.93 0.97 0.95 0.97]0.98 0.96 0.97 0.98|0.95 0.99 0.97 0.99|0.77 0.99 0.86 0.95
Bagging 0.97 0.99 0.98 0.99(0.98 0.98 0.98 0.99|0.98 0.99 0.99 0.99|0.77 0.99 0.87 0.95
GradBoosting 0.94 0.99 0.97 0.98/0.98 0.98 0.98 0.99|0.96 0.99 0.98 0.99[0.77 1 0.87 0.95
MajorVote 0.95 0.99 0.97 0.98|0.97 0.97 0.97 0.98]0.97 0.98 0.98 0.99[0.78 0.99 0.87 0.95
AvgProba  0.96 0.97 0.97 0.98|0.98 0.96 0.97 0.98|0.97 0.98 0.97 0.99|0.78 0.99 0.87 0.95
AccWProba 0.96 0.97 0.97 0.98|0.98 0.96 0.97 0.98|0.97 0.98 0.97 0.99|0.78 0.99 0.87 0.95
F1WProba 0.96 0.97 0.97 0.98]0.98 0.96 0.97 0.98|0.97 0.98 0.97 0.99|0.78 0.99 0.87 0.95
MinProba 088 1 093 096(092 1 096 097/08 1 093 097(065 1 0.79 0.92
MaxProba 099 0.9 094 096 1 0.81 0.89 0.92|0.99 0.92 0.95 0.98| 0.8 0.93 0.86 0.94
ProdProba 0.0 06 00 06700 00 0.0 06700 01 0.0 07700 00 00 0.78
RQ4 StaPredSVM 0.95 0.98 0.96 0.98(0.96 0.91 0.94 0.96|0.97 0.97 097 0.99|0.71 0.98 0.83 0.93
StaProbSVM 0.96 0.98 0.97 0.98|0.97 0.92 0.95 0.96|0.98 0.99 0.98 0.99|0.74 0.99 0.85 0.94
StaPredRF 0.95 0.98 0.97 0.98|0.96 0.91 0.94 0.96|0.97 0.97 0.97 0.99|0.72 0.98 0.83 0.93
StaProbRF 0.96 0.98 0.97 0.98]0.97 0.93 0.95 0.97]0.98 0.98 0.98 0.99|0.75 0.99 0.85 0.94
StaPredKNN 0.95 0.98 0.97 0.98|0.96 0.92 0.94 0.96 |0.97 0.97 0.97 0.99|0.71 0.98 0.82 0.93
StaProbKNN 0.96 0.98 0.97 0.98|0.97 0.92 0.94 0.96|0.97 0.98 0.98 0.99|0.78 0.98 0.87 0.95
StaPredMLP 0.95 0.98 0.97 0.98|0.96 0.91 0.94 0.96|0.97 0.97 0.97 0.99]0.71 0.98 0.83 0.93
StaProbMLP 0.96 0.98 0.97 0.98(0.97 0.92 0.95 0.96 0.97 0.98 0.98 0.99]|0.75 0.99 0.85 0.94
EnsemSelect 0.97 0.99 10.98 0.99|0.99 0.97 10.98 0.99|0.97 0.99 0.98 0.99/0.78 1 0.88 0.95

The cells highlighted in grey show the best detector for each dataset and for each RQ based on the F1 score before

rounding
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Table 9: Evaluation of the state-of-the-art approaches versus the
combination of features versus the combination of classifiers on the
DREBIN and REVEALDROID Literature datasets

Literature DREBIN dataset Literature RevealDroid dataset

Temporally- Temporally- Temporally- Temporally-

inconsistent consistent inconsistent consistent
R P F1 A|JR P F1I A | R P F1 A|R P F1I A
DREBIN 093 0.96 0.94 0.99|0.02 0.820.87 0.99|0.98 0.07 0.97 093] 0.9 0.99 0.94 0.95
Reveal 0.29 0.87 0.44 0.97]0.27 0.79 0.41 0.96[0.94 0.86 0.9 0.9 |0.69 0.97 0.81 0.85
MaMaF 018 1 031 096|019 1 0.32 096|095 085 0.9 09 |0.83 093 0.88 0.89
MaMaP 031 1 048 0.97[0.08 0.9 0.14 0.96]0.99 0.89 0.94 0.94]0.91 0.97 0.94 0.95
MalD 0.89 0.85 0.87 0.99|0.87 0.58 0.7 0.97[0.95 0.93 0.94 0.94|0.76 0.98 0.86 0.89
RQ1 MalH 0.89 0.88 0.89 0.99]0.95 0.56 0.7 0.96|0.96 0.94 0.95 0.95|0.82 0.98 0.89 0.91
MalK 0.91 0.89 0.9 0.99]0.88 0.57 0.69 0.96|0.96 0.94 0.95 0.95|0.81 0.98 0.89 0.91
MalCl 0.9 0.86 0.88 0.99]0.87 0.69 0.77 0.98[0.96 0.94 0.95 0.95|0.81 0.99 0.89 0.91
MalA 0.89 0.88 0.89 0.99]0.95 0.56 0.71 0.96|0.96 0.94 0.95 0.95|0.82 0.98 0.89 0.91
MalCo 0.89 0.88 0.89 0.99]0.95 0.56 0.7 0.96|0.96 0.94 0.95 0.95|0.82 0.98 0.89 0.91
LinearSVC 0.87 0.8 083 008]097 06 0.73 097]0.95 093 094 094] 0.8 0.96 0.87 0.89
RF 0.85 1 092 099075 1 085 0.99[0.96 0.97 097 097|066 1 0.79 0.84
RQ3 KNN 0.8 0.88 0.83 0.99]0.79 0.73 0.76 0.98[0.94 0.91 0.92 0.93|0.57 0.97 0.72 0.8
AdaBoost  0.81 0.92 0.86 0.99|0.88 0.94 [0:917 0.99 [0.97 0.98 0.97 0.98]0.92 0.99 0.95 0.96
Bagging  0.94 0.97[0:96 1 |0.77 0.95 0.85 0.990.98 0.98 [0:981 0.98[0.89 1 094 0.95
GradBoosting 0.86 0.98 0.92 0.99|0.71 0.98 0.82 0.99[0.98 0.98 0.98 0.98(0.93 1 [0:96] 0.96
MajorVote 0.88 0.97 0.02 0.99]0.86 0.84 0.85 0.09]0.97 0.06 0.96 0.97]0.84 0.99 0.91 0.3
AvgProba  0.89 0.95 0.92 0.99|0.87 0.8 0.83 0.980.96 0.95 0.96 0.96]0.84 0.99 0.91 0.92
AccWProba 0.89 0.95 0.92 0.99|0.87 0.81 0.84 0.980.96 0.95 0.96 0.96|0.84 0.99 0.91 0.92
F1WProba 089 0.94 091 0099|087 0.76 0.81 0.98]0.96 0.95 0.96 0.96|0.84 0.99 0.91 0.92
MinProba 008 1 014 096|00 0.1 00 095/085 1 092 093046 1 063 0.75
MaxProba 097 0.69 0.81 0.980.99 0.38 0.54 0.92| 1 0.76 0.86 0.86|0.98 0.91 0.95 0.95
ProdProba 0.0 0.0 00 095/ 00 00 00 09500 03 00 054]00 00 00 054
RQ4 StaPredSVM 094 093 0.93 0.99]0.95 0.72 0.82 098|099 096 0.97 0.98|0.92 0.99 0.95 096
StaProbSVM 0.94 0.97[0:95 1 | 0.9 0.79 0.84 0.98|0.98 0.97 0.97 0.97]0.86 0.99 0.92 0.94
StaPredRF  0.94 0.91 093 0.99]0.95 0.67 0.79 0.98|0.99 0.96 0.97 0.97|0.89 0.99 0.94 0.95
StaProbRF 095 0.95 095 1 |0.85 0.76 0.8 0.98|0.99 0.96 0.97 0.98]0.91 0.99 0.94 0.95
StaPredKNN 0.94 0.91 0.92 0.99]0.93 0.68 0.79 0.98|0.97 0.97 0.97 0.97|0.85 0.99 0.92 0.93
StaProbKNN 0.95 0.93 0.94 0.99]0.88 0.73 0.8 0.98]0.97 0.95 0.96 0.96|0.86 0.99 0.92 0.93
StaPredMLP 095 0.91 0.93 0.99|0.97 0.68 0.8 0.98]0.98 0.97 0.97 0.98|0.89 0.99 0.94 0.95
StaProbMLP 0.95 0.95 0.95 1 |0.91 0.72 0.81 0.98|0.99 0.95 0.97 0.97|0.91 0.99 0.95 0.96
EnsemSelect 0.93 0.97 095 1 |0.96 0.84 [0:89 0.99|0.99 0.98 [0:98 0.98|0.94 0.99 [0:96] 0.97

The cells highlighted in grey show the best detector for each dataset and for each RQ based on the F1 score before

rounding
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Table 10: Evaluation of the state-of-the-art approaches versus the
combination of features versus the combination of classifiers on the

MAMADROID and MALSCAN Literature datasets
Literature MaMaDroid dataset Literature MalScan dataset

Temporally- Temporally- Temporally- Temporally-

inconsistent consistent inconsistent consistent
R P F1 A|R P F1I A|R P F1 A|R P F1I A
DREBIN 098 0.980.98 0.96|0.89 0.950.92 0.87 |0.96 0.96 0.96 0.96|0.78 0.95 0.86 0.87
Reveal 0.97 0.92 0.94 091]0.73 0.94 0.83 0.75|0.87 0.91 0.89 0.9 |0.48 0.88 0.62 0.72
MaMaF 098 09 094 0.89]0.86 0.92 0.89 0.82[0.81 0.84 0.82 0.83|0.53 0.82 0.64 0.72
MaMaP  0.98 0.92 0.95 0.92]0.78 0.93 0.85 0.78(0.94 0.96 0.95 0.95[0.61 0.98 0.74 0.81
MalD 0.96 0.95 0.95 0.93]0.68 0.94 0.79 0.71[0.97 0.93 0.95 0.95|0.81 0.95 0.87 0.89
RQ1 MalH 0.96 0.96 0.96 0.93]0.75 0.95 0.83 0.76 |0.97 0.95 0.96 0.96|0.82 0.96 0.88 0.9
MalK 0.96 0.95 0.96 0.93]0.71 0.95 0.81 0.73[0.97 0.94 0.95 0.96| 0.8 095 0.87 0.88
MalCl 0.96 0.95 0.96 0.93]0.75 0.94 0.84 0.77[0.97 0.94 0.96 0.96|0.82 0.96 0.88 0.89
MalA 0.96 0.96 0.96 0.94|0.75 0.95 0.83 0.76 [0.97 0.95 0.96 0.96| 0.8 0.96 0.87 0.89
MalCo 0.96 0.96 0.96 0.94|0.74 0.95 0.83 0.76 [0.97 0.95 0.96 0.96| 0.8 0.96 0.87 0.89
LinearSVC  0.92 0.94 0.93 0.89[0.72 0.92 0.81 0.72]0.88 0.9 0.89 0.89]0.65 0.82 0.71 0.76
RF 0.97 0.96 0.97 0.95|0.64 0.95 0.77 0.69 [0.96 0.98 0.97 0.97|0.76 0.99 0.86 0.88
RQS KNN 0.96 0.93 0.95 0.92]0.62 0.93 0.74 0.65[0.93 0.89 0.91 0.91|0.75 0.9 0.82 0.84
AdaBoost  0.96 0.96 0.96 0.94|0.85 0.95 0.9 0.84[0.95 0.95 0.95 0.95|0.74 0.91 0.81 0.84
Bagging  0.97 0.970.97 0.96|0.78 0.95 0.86 0.79|0.98 0.97 [0.97 0.98|0.78 0.94 0.85 0.87
GradBoosting 0.97 0.96 0.97 0.95|0.85 0.95 0.9 0.85|0.97 0.97 0.97 0.97|0.81 0.95 0.88 0.89
MajorVote 097 0.96 0.97 0.95]0.76 0.95 0.85 0.78]0.97 0.97 0.97 0.97]0.78 0.99 0.87 0.89
AvgProba  0.97 0.96 0.96 0.94|0.76 0.95 0.85 0.78|0.97 0.96 0.97 0.97|0.81 0.98 0.89 0.9
AccWProba 0.97 0.96 0.96 0.94|0.76 0.95 0.85 0.78[0.97 0.96 0.97 0.97|0.81 0.98 0.89 0.9
F1WProba 0.97 0.96 0.96 0.94|0.76 0.95 0.85 0.78|0.97 0.96 0.97 0.97[0.81 0.98 0.89 0.9
MinProba 0.9 0.99 0.94 0.91|045 0.97 0.62 055|069 1 082 0.85/025 1 0.38 0.64
MaxProba 1 0.87 0.93 0.88/0.96 0.910.93 0.89| 1 0.76 0.86 0.85|0.94 0.78 0.85 0.84
ProdProba 0.0 05 00 02|00 00 00 02|00 00 00 052/00 00 00 052
RQ4 StaPredSVM 0.98 0.97 0.97 0.96|0.81 0.95 0.87 0.81(0.96 0.96 0.96 0.96|0.78 0.93 0.85 0.87
StaProbSVM 0.98 0.97 0.97 0.96|0.75 0.95 0.84 0.77|0.98 0.98 0.98 0.98|0.84 0.98 0.9 0.91
StaPredRF 098 0.96 0.97 0.95[0.82 0.95 0.88 0.82|0.96 0.98 0.97 0.97|0.76 0.96 0.85 0.87
StaProbRF  0.98 0.97 0.97 0.96|0.84 0.95 0.89 0.84|0.98 0.97 0.97 0.98|0.81 0.98 0.89 0.9
StaPredKNN 0.98 0.97 0.97 0.95| 0.8 0.95 0.87 0.81|0.95 0.98 0.97 0.97|0.76 0.99 0.86 0.88
StaProbKNN 0.97 0.97 0.97 0.95[0.74 0.95 0.83 0.76 |0.97 0.97 0.97 0.97|0.83 0.97 0.9 0.91
StaPredMLP 098 0.97 0.97 0.95|0.83 0.95 0.88 0.83|0.96 0.98 0.97 0.97|0.76 0.97 0.85 0.87
StaProbMLP 0.98 0.97 0.97 0.95|0.77 0.96 0.85 0.79[0.98 0.97 0.97 0.97|0.82 0.97 0.89 0.9
EnsemSelect 0.98 0.97 [0:98 0.96 | 0.89 0.94 0.91 0.860.98 0.98 0.98 0.98|0.82 0.98 0.89 0.9

The cells highlighted in grey show the best detector for each dataset and for each RQ based on the F1 score before

rounding
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Table 11: Proportion of malware samples detected by state-of-the-art
approaches and belonging to the 20 top families in the Literature dataset

Families # DREBIN Reveal MaMaF MaMaP MalD MalH MalK MalCl MalA MalCo

dowgin 352 98.6 68.8 63.1 86.9 93.2 94.0 94.3 94.0 94.0 94.0
fakeinst 345 99.4 31.9 28.7 38.0 98.6 98.6 98.6 98.6 98.6 98.6

kuguo 246 96.7 62.2 62.6 83.3 94.7 94.7 93.9 95.1 94.7 94.7

smsreg 222 96.4 79.3 43.7 67.6 91.4 93.2 92.8 93.2 93.2 92.8
airpush 214 86.4 57.0 6.1 72.4 87.4 91.6 90.2 91.1 91.6 90.7
gappusin 199 86.4 66.8 28.6 45.2 88.9 89.4  89.9 88.9 89.4 89.4
g boxer 195 99.5 1.5 76.9 82.1 100.0 100.0 100.0 100.0 100.0 100.0
% adwo 195 82.6 72.8 11.8 62.6 85.6 86.2 86.7 856 86.2 86.2
§ opfake 156 100.0 69.2 2.6 8.3 98.7 82.7 98.7 98.1 98.1 98.7
= plankton 119 98.3 28.6 3.4 58.8 90.8 90.8 94.1 92.4 90.8 90.8
% youmi 111 82.9 66.7 38.7 51.4 82.0 82.9 85.6 82.9 82.9 82.9
g umpay 89 98.9 92.1 49.4 94.4 97.8 97.8 98.9 98.9 97.8 97.8
% droidkungfu 80 92.5 73.8 52.5 66.2 92.5 92.5 93.8 93.8 93.8 93.8
& secapk 66 95.5 93.9 6.1 13.6 75.8 75.8 74.2 75.8 75.8 74.2
domob 54 85.2 77.8 22.2 25.9 85.2 85.2 87.0 87.0 85.2 85.2
smsagent 54 98.1 5.6 0.0 1.9 96.3 94.4 96.3 94.4 94.4 94.4
admogo 50 100.0 96.0 24.0 90.0 100.0 100.0 100.0 100.0 100.0 100.0
revmob 48 81.2 45.8 50.0 83.3 81.2 85.4 85.4 85.4 81.2 83.3
ginmaster 48 83.3 14.6 14.6 25.0 77.1 81.2 79.2 81.2 81.2 81.2
jiagu 45 97.8 93.3 13.3 0.0 100.0 100.0 100.0 100.0 100.0 100.0

jiagu 408 77.2 64.0 0.0 0.2 0.7 10.3 0.7 0.7 19.9 19.9

dnotua 303 5.0 5.0 0.3 11.2 94.4 2.6 94.1 94.1 2.6 2.6
airpush 296 60.5 38.5 3.0 60.8 69.9 75.7  87.2 68.2 75.7 75.7
fakeapp 222 8.1 6.3 1.8 1.4 59.9 24.8 32.4 59.0 24.8 24.8

smsreg 136 94.1 77.9 36.0 52.2 57.4 66.9 63.2 63.2 69.1 69.1

secapk 122 40.2 92.6 4.9 4.9 41.8 43.4 43.4 43.4 43.4 43.4

E smspay 107 96.3 88.8 38.3 56.1 78.5 80.4 79.4 78.5 81.3 81.3
:"2 hiddenads 80 98.8 63.8 7.5 7.5 15.0 23.8 16.2 17.5 30.0 30.0
% dowgin 74 86.5 86.5 45.9 51.4 54.1 63.5 64.9 67.6 64.9 64.9
; kyview 70 98.6 714 31.4 41.4 52.9 58.6 51.4 54.3 62.9 62.9
?? tencentprotect 69 68.1 88.4 0 0 97.1 98.6 98.6 98.6 98.6 98.6
8« youmi 63 98.4 66.7 50.8 55.6 47.6 61.9 49.2 55.6 65.1 65.1
EJ ramnit 59 28.8 13.6 8.5 25.4 71.2 16.9 35.6 76.3 16.9 16.9
kuguo 50 88.0 78.0 72.0 66.0 58.0 48.0 52.0 58.0 48.0 48.0

ewind 47 59.6 59.6 6.4 10.6 46.8 51.1 34.0 36.2 55.3 55.3
leadbolt 45 88.9 84.4 4.4 71.1 80.0 73.3 77.8 75.6 73.3 73.3
revmob 45 95.6 17.8 0.0 35.6 100.0 88.9 82.2 95.6 88.9 88.9

tachi 41 0 0 0 0 0 0 0 0 0 0
feiwo 35 54.3 51.4 48.6 65.7 60.0 51.4 57.1 60.0 51.4 51.4
umpay 32 93.8 93.8 56.2 75.0 68.8 781  96.9 78.1 78.1 78.1

The entries in bold show the best detector for each malware family
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Table 12: Proportion of malware samples detected by state-of-the-art
approaches and belonging to the 20 top families

in the AndroZoo dataset

Families # DREBIN Reveal MaMaF MaMaP MalD MalH MalK MalCl MalA MalCo
jiagu 4781 99.6 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
dnotua 140 43.6 0.7 92.1 97.9 97.1 96.4 48.6 96.4 52.1 52.9
secneo 69 84.1 98.6 0 98.6 79.7 58.0 79.7 79.7 78.3 78.3
tencentprotect 57 100.0 96.5 100.0 100.0 98.2 98.2 98.2 98.2 98.2 98.2
smsreg 46 95.7 78.3 19.6 82.6 95.7 95.7 95.7 95.7 95.7 95.7
hiddad 16 81.2 37.5 6.2 56.2 75.0 75.0 75.0 68.8 75.0 75.0
;E_) smspay 11 100.0 100.0 90.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
% hypay 9 100.0 7.8 0 88.9 100.0 100.0 100.0 100.0 100.0 100.0
§ utilcode 9 100.0 100.0 0.0 88.9 100.0 100.0 100.0 100.0 100.0 100.0
= ewind 8 100.0 62.5 75.0 100.0 75.0 75.0 87.5 75.0 75.0 75.0
:: wapron 8 100.0 100.0 87.5 87.5 100.0 100.0 100.0 100.0 100.0 100.0
g datacollector 7 100.0 85.7 0.0 85.7 100.0 100.0 100.0 100.0 100.0 100.0
g kuguo 6 83.3 83.3 0.0 66.7 66.7 66.7 66.7 66.7 66.7 66.7
= styricka 6 100.0 83.3 0 0.0 83.3 83.3 83.3 83.3 83.3 83.3
fakeapp 5 80.0 0.0 0.0 80.0 100.0 100.0 100.0 100.0 100.0 100.0
triada 5 100.0 80.0 60.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0
revmob 5 80.0 80.0 0 80.0 80.0 80.0 80.0 80.0 80.0 80.0
airpush 5 60.0 20.0 0 40.0 60.0 60.0 60.0 60.0 60.0 60.0
baiduprotect 4 75.0 75.0 0.0 100.0 0.0 25.0 25.0 25.0 25.0 25.0
autoins 4 100.0 100.0 25.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
jiagu 5351 87.1 98.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
dnotua 457 28.9 0 71.8 89.7 88.8 89.1 29.8 87.7 35.9 34.6
hiddenad 35 65.7 57.1 54.3 57.1 65.7 65.7 65.7 68.6 65.7 65.7
hiddad 32 0.0 3.1 0 3.1 156 21.9 15.6 21.9 219 21.9
joker 11 27.3 0 0 0 63.6 63.6 63.6 72.7  63.6 63.6
Jjocker 9 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E emagsoftware 9 66.7 33.3 0 0 11.1 11.1 11.1 11.1 11.1 11.1
‘% autoins 7 100.0 100.0 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
% smspay 7 85.7 85.7 71.4 85.7 71.4 71.4 71.4 71.4 71.4 71.4
; plankton 7 0 0 0 0 0 0 0 0 0 0
% hiddenads 6 0.0 0.0 0 0.0 16.7 0.0 0.0 0.0 0.0 0.0
54 utilcode 6 100.0 33.3 0 16.7 66.7 50.0 66.7 50.0 50.0 50.0
é funpay 5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
secneo 5 0.0 0 0 0 0 20.0 0 0 0 0
fakeapp 5 0 0 0 0 0 0.0 0 0 0.0 0.0
smsreg 5 40.0 40.0 40.0 20.0 40.0 40.0 60.0 60.0 40.0 40.0
datacollector 5 100.0 40.0 0 80.0 100.0 100.0 100.0 100.0 100.0 100.0
hiddenapp 5 0 0 0 0 0 0 0 0 0 0
apkprotector 4 25.0 0.0 25.0 25.0 50.0 50.0 25.0 25.0 50.0 50.0
airpush 4 50.0 25.0 0 0 25.0 25.0 25.0 25.0 25.0 25.0

The entries in bold show the best detector for each malware family
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