Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Edge Computing-enabled Intrusion Detection for C-V2X Networks using Federated Learning
Selamnia, Aymene; Brik, Bouziane; Senouci, Sidi-Mohammed et al.
2022In The 2022 IEEE Global Communications Conference (GLOBECOM)
Peer reviewed
 

Documents


Texte intégral
Edge_computing_enabled_low_latency_intrusion_detection_system_using_federated_learning.pdf
Postprint Éditeur (346.83 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
C-V2X; Intrusion detection system; Edge computing; Federated deep learning
Résumé :
[en] Intrusion detection systems (IDS) have already demonstrated their effectiveness in detecting various attacks in cellular vehicle-to-everything (C-V2X) networks, especially when using machine learning (ML) techniques. However, it has been shown that generating ML-based models in a centralized way consumes a massive quantity of network resources, such as CPU/memory and bandwidth, which may represent a critical issue in such networks. To avoid this problem, the new concept of Federated Learning (FL) emerged to build ML-based models in a distributed and collaborative way. In such an approach, the set of nodes, e.g., vehicles or gNodeB, collaborate to create a global ML model trained across these multiple decentralized nodes, each one with its respective data samples that are not shared with any other nodes. In this way, FL enables, on the one hand, data privacy since sharing data with a central location is not always feasible and, on the other hand, network overhead reduction. This paper designs a new IDS for C-V2X networks based on FL. It leverages edge computing to not only build a prediction model in a distributed way but also to enable low-latency intrusion detection. Moreover, we build our FL-based IDS on top of the well-known CIC-IDS2018 dataset, which includes the main network attacks. Noting that, we first perform feature engineering on the dataset using the ANOVA method to consider only the most informative features. Simulation results show the efficiency of our system compared to the existing solutions in terms of attack detection accuracy while reducing network resource consumption.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Selamnia, Aymene
Brik, Bouziane
Senouci, Sidi-Mohammed
BOUALOUACHE, Abdelwahab ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Hossain, Shajjad
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Edge Computing-enabled Intrusion Detection for C-V2X Networks using Federated Learning
Date de publication/diffusion :
décembre 2022
Nom de la manifestation :
The 2022 IEEE Global Communications Conference (GLOBECOM)
Date de la manifestation :
4-8 December 2022.
Titre de l'ouvrage principal :
The 2022 IEEE Global Communications Conference (GLOBECOM)
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR14891397 - Intelligent Orchestrated Security And Privacy-aware Slicing For 5g And Beyond Vehicular Networks, 2020 (01/04/2021-31/03/2024) - Thomas Engel
Disponible sur ORBilu :
depuis le 08 janvier 2023

Statistiques


Nombre de vues
116 (dont 1 Unilu)
Nombre de téléchargements
60 (dont 1 Unilu)

citations Scopus®
 
4
citations Scopus®
sans auto-citations
4

Bibliographie


Publications similaires



Contacter ORBilu