[en] PURPOSE: Pathogenic variants in SCN2A cause a wide range of neurodevelopmental phenotypes. Reports of genotype-phenotype correlations are often anecdotal, and the available phenotypic data have not been systematically analyzed. METHODS: We extracted phenotypic information from primary descriptions of SCN2A-related disorders in the literature between 2001 and 2019, which we coded in Human Phenotype Ontology (HPO) terms. With higher-level phenotype terms inferred by the HPO structure, we assessed the frequencies of clinical features and investigated the association of these features with variant classes and locations within the Na(V)1.2 protein. RESULTS: We identified 413 unrelated individuals and derived a total of 10,860 HPO terms with 562 unique terms. Protein-truncating variants were associated with autism and behavioral abnormalities. Missense variants were associated with neonatal onset, epileptic spasms, and seizures, regardless of type. Phenotypic similarity was identified in 8/62 recurrent SCN2A variants. Three independent principal components accounted for 33% of the phenotypic variance, allowing for separation of gain-of-function versus loss-of-function variants with good performance. CONCLUSION: Our work shows that translating clinical features into a computable format using a standardized language allows for quantitative phenotype analysis, mapping the phenotypic landscape of SCN2A-related disorders in unprecedented detail and revealing genotype-phenotype correlations along a multidimensional spectrum.
Disciplines :
Génétique & processus génétiques
Auteur, co-auteur :
Crawford, Katherine
Xian, Julie
Helbig, Katherine L.
Galer, Peter D.
Parthasarathy, Shridhar
Lewis-Smith, David
Kaufman, Michael C.
Fitch, Eryn
Ganesan, Shiva
O'Brien, Margaret
CODONI, Veronica ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Ellis, Colin A.
Conway, Laura J.
Taylor, Deanne
KRAUSE, Roland ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Scheffer, I. E. et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 58, 512–521 (2017). DOI: 10.1111/epi.13709
Heyne, H. O. et al. De novo variants in neurodevelopmental disorders with epilepsy. Nat. Genet. 50, 1048–1053 (2018). DOI: 10.1038/s41588-018-0143-7
Lindy, A. S. et al. Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders. Epilepsia. 59, 1062–1071 (2018). DOI: 10.1111/epi.14074
Truty, R. et al. Possible precision medicine implications from genetic testing using combined detection of sequence and intragenic copy number variants in a large cohort with childhood epilepsy. Epilepsia Open. 4, 397–408 (2019). DOI: 10.1002/epi4.12348
Howell, K. B. et al. A population-based cost-effectiveness study of early genetic testing in severe epilepsies of infancy. Epilepsia. 59, 1177–1187 (2018). DOI: 10.1111/epi.14087
Sanders, S. J., Campbell, A. J. & Cottrell, J. R. et al. Progress in understanding and treating SCN2A-mediated disorders. Trends Neurosci. 41, 442–456 (2018).
Boiko, T., Van Wart, A., Caldwell, J. H., Levinson, S. R., Trimmer, J. S. & Matthews, G. Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J. Neurosci. 23, 2306–2313 (2003). DOI: 10.1523/JNEUROSCI.23-06-02306.2003
Wolff, M. et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain. 140, 1316–1336 (2017). DOI: 10.1093/brain/awx054
Lauxmann, S. et al. Relationship of electrophysiological dysfunction and clinical severity in SCN2A-related epilepsies. Hum. Mutat. 39, 1942–1956 (2018). DOI: 10.1002/humu.23619
Sugawara, T. et al. A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc. Natl. Acad. Sci. U. S. A. 98, 6384–6389 (2001). DOI: 10.1073/pnas.111065098
Heron, S. E. et al. Sodium-channel defects in benign familial neonatal–infantile seizures. Lancet. 360, 851–852 (2002). DOI: 10.1016/S0140-6736(02)09968-3
Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 485, 237–241 (2012). DOI: 10.1038/nature10945
Ogiwara, I. et al. De novo mutations of voltage-gated sodium channel alphaII gene SCN2A in intractable epilepsies. Neurology. 73, 1046–1053 (2009). DOI: 10.1212/WNL.0b013e3181b9cebc
Nakamura, K. et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology. 81, 992–998 (2013). DOI: 10.1212/WNL.0b013e3182a43e57
Howell, K. B. et al. SCN2A encephalopathy: a major cause of epilepsy of infancy with migrating focal seizures. Neurology. 85, 958–966 (2015). DOI: 10.1212/WNL.0000000000001926
Wolff, M., Brunklaus, A. & Zuberi, S. M. Phenotypic spectrum and genetics of SCN2A-related disorders, treatment options, and outcomes in epilepsy and beyond. Epilepsia. 60, S59–S67 (2019). DOI: 10.1111/epi.14935
Ben-Shalom, R., Keeshen, C. M., Berrios, K. N., An, J. Y., Sanders, S. J. & Bender, K. J. Opposing effects on NaV1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures. Biol. Psychiatry 82, 224–232 (2017). DOI: 10.1016/j.biopsych.2017.01.009
Fisher, R. S. et al. Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 58, 522–530 (2017). DOI: 10.1111/epi.13670
Köhler, S. et al. Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res. 47, D1018–d1027 (2019). DOI: 10.1093/nar/gky1105
Helbig, I. et al. A recurrent missense variant in AP2M1 impairs clathrin-mediated endocytosis and causes developmental and epileptic encephalopathy. Am. J. Hum. Genet. 104, 1060–1072 (2019). DOI: 10.1016/j.ajhg.2019.04.001
Galer, P., Ganesan, S. & Lewis-Smith, D. et al. Semantic similarity analysis reveals robust gene-disease relationships in developmental and epileptic encephalopathies. Am. J. Hum. Genet. 107, 683–697 (2020).
Ganesan, S., Galer, P. D. & Helbig, K. L. et al. A longitudinal footprint of genetic epilepsies using automated electronic medical record interpretation. Genet. Med. 22, 2060–2070 (2020).
Son, J. H. et al. Deep phenotyping on electronic health records facilitates genetic diagnosis by clinical exomes. Am. J. Hum. Genet. 103, 58–73 (2018). DOI: 10.1016/j.ajhg.2018.05.010
Shen, F., Wang, L. & Liu, H. Phenotypic analysis of clinical narratives using Human Phenotype Ontology. Stud. Health Technol. Inform. 245, 581–585 (2017).
Stenson, P. D., Mort, M. & Ball, E. V. et al. The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or research setting. Hum. Genet. 139, 1197–1207 (2020).
Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). DOI: 10.1038/gim.2015.30
Turro, E. et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature. 583, 96–102 (2020). DOI: 10.1038/s41586-020-2434-2
Resnik, P. Using information content to evaluate semantic similarity in a taxonomy. Paper presented at: 14th international joint conference on Artificial intelligence. 448–453 (IJCAI, San Francisco, CA, USA, 1995).
Landgraf, A. J. & Lee, Y. Dimensionality Reduction for Binary Data through the Projection of Natural Parameters. arXiv (2015). Available at: https://arxiv.org/abs/1510.06112.
R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2017).
UniProt Consortium T. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 46, 2699 (2018). DOI: 10.1093/nar/gky092
Begemann, A., Acuña, M. & Zweier, M. et al. Further corroboration of distinct functional features in SCN2A variants causing intellectual disability or epileptic phenotypes. Mol. Med. 27, 6 (2019).
Brunklaus, A., Ellis, R., Reavey, E., Semsarian, C. & Zuberi, S. M. Genotype phenotype associations across the voltage-gated sodium channel family. J. Med. Genet. 51, 650–658 (2014). DOI: 10.1136/jmedgenet-2014-102608
Shi, X. Y. et al. Clinical spectrum of SCN2A mutations. Brain Dev. 34, 541–545 (2012). DOI: 10.1016/j.braindev.2011.09.016
Leach, E. L., van Karnebeek, C. D. M., Townsend, K. N., Tarailo-Graovac, M., Hukin, J. & Gibson, W. T. Episodic ataxia associated with a de novo SCN2A mutation. Eur. J. Paediatr. Neurol. 20, 772–776 (2016). DOI: 10.1016/j.ejpn.2016.05.020
Liao, Y. et al. SCN2A mutation associated with neonatal epilepsy, late-onset episodic ataxia, myoclonus, and pain. Neurology. 75, 1454–1458 (2010). DOI: 10.1212/WNL.0b013e3181f8812e
Schwarz, N. et al. Mutations in the sodium channel gene SCN2A cause neonatal epilepsy with late-onset episodic ataxia. J. Neurol. 263, 334–343 (2016). DOI: 10.1007/s00415-015-7984-0
Suddaby, J. S., Silver, J. & So, J. Understanding the schizophrenia phenotype in the first patient with the full SCN2A phenotypic spectrum. Psychiatr. Genet. 29, 91–94 (2019).
Pesquita, C., Faria, D., Falcao, A. O., Lord, P. & Couto, F. M. Semantic similarity in biomedical ontologies. PLoS Comput. Biol. 5, e1000443 (2009). DOI: 10.1371/journal.pcbi.1000443
Shen, F. et al. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology. J. Biomed. Inform. 96, 103246 (2019). DOI: 10.1016/j.jbi.2019.103246
Heyne, H. O., Baez-Nieto, D. & Iqbal, S. et al. Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. Sci. Transl. Med. 12, eaay6848 (2020).
Liu, C., Peres Kury, F. S., Li, Z., Ta, C., Wang, K. & Weng, C. Doc2Hpo: a web application for efficient and accurate HPO concept curation. Nucleic Acids Res. 47, W566–W570 (2019). DOI: 10.1093/nar/gkz386