[en] The long-wavelength physics of monolayer graphene in the presence of periodic strain fields has a
natural chiral scattering network description. When the strain field varies slowly compared to the
graphene lattice and the effective magnetic length of the induced valley pseudomagnetic field, the
low-energy physics can be understood in terms of valley-polarized percolating domain-wall modes.
Inspired by a recent experiment, we consider a strain field with threefold rotation and mirror sym-
metries but without twofold rotation symmetry, resulting in a system with the connectivity of
the oriented kagome network. Scattering processes in this network are captured by a symmetry-
constrained phenomenological S matrix. We analyze the phase diagram of the kagome network, and
show that the bulk physics of the strained graphene can be qualitatively captured by the network
when we account for a percolation transition at charge neutrality. We also discuss the limitations
of this approach to properly account for boundary physics.
Disciplines :
Physics
Author, co-author :
DE BEULE, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; University of Pennsylvania - Penn > Physics and Astronomy
Võ Tiến, Phong; University of Pennsylvania - Penn > Physics and Astronomy
Mele, Eugene John; University of Pennsylvania - Penn > Physics and Astronomy
External co-authors :
yes
Language :
English
Title :
Network model for periodically strained graphene
Publication date :
05 January 2023
Journal title :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Publisher :
American Physical Society, College Park, United States - Maryland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
C. Forsythe, X. Zhou, K. Watanabe, T. Taniguchi, A. Pasupathy, P. Moon, M. Koshino, P. Kim, and C. R. Dean, Band structure engineering of 2D materials using patterned dielectric superlattices, Nat. Nanotechnol. 13, 566 (2018) 1748-3387 10.1038/s41565-018-0138-7.
J. Mao, S. P. Milovanović, M. Ancrossed d signelković, X. Lai, Y. Cao, K. Watanabe, T. Taniguchi, L. Covaci, F. M. Peeters, A. K. Geim, Y. Jiang, and E. Y. Andrei, Evidence of flat bands and correlated states in buckled graphene superlattices, Nature (London) 584, 215 (2020) 0028-0836 10.1038/s41586-020-2567-3.
Y. Jiang, J. Mao, J. Duan, X. Lai, K. Watanabe, T. Taniguchi, and E. Y. Andrei, Visualizing strain-induced pseudomagnetic fields in graphene through an hBN magnifying glass, Nano Lett. 17, 2839 (2017) 1530-6984 10.1021/acs.nanolett.6b05228.
E. Y. Andrei, D. K. Efetov, P. Jarillo-Herrero, A. H. MacDonald, K. F. Mak, T. Senthil, E. Tutuc, A. Yazdani, and A. F. Young, The marvels of moiré materials, Nat. Rev. Mater. 6, 201 (2021) 2058-8437 10.1038/s41578-021-00284-1.
J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Graphene Bilayer with a Twist: Electronic Structure, Phys. Rev. Lett. 99, 256802 (2007) 0031-9007 10.1103/PhysRevLett.99.256802.
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature (London) 556, 80 (2018) 0028-0836 10.1038/nature26154.
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature (London) 556, 43 (2018) 0028-0836 10.1038/nature26160.
S. P. Milovanović, M. Ancrossed d signelković, L. Covaci, and F. M. Peeters, Band flattening in buckled monolayer graphene, Phys. Rev. B 102, 245427 (2020) 2469-9950 10.1103/PhysRevB.102.245427.
A. L. R. Manesco, J. L. Lado, E. V. S. Ribeiro, G. Weber, and D. Rodrigues Jr, Correlations in the elastic landau level of spontaneously buckled graphene, 2D Mater. 8, 015011 (2021) 2053-1583 10.1088/2053-1583/abbc5f.
A. L. R. Manesco and J. L. Lado, Correlation-induced valley topology in buckled graphene superlattices, 2D Mater. 8, 035057 (2021) 2053-1583 10.1088/2053-1583/ac0b48.
D. Giambastiani, F. Colangelo, A. Tredicucci, S. Roddaro, and A. Pitanti, Electron localization in periodically strained graphene, J. Appl. Phys. 131, 085103 (2022) 0021-8979 10.1063/5.0080098.
V. T. Phong and E. J. Mele, Boundary Modes from Periodic Magnetic and Pseudomagnetic Fields in Graphene, Phys. Rev. Lett. 128, 176406 (2022) 0031-9007 10.1103/PhysRevLett.128.176406.
H. Suzuura and T. Ando, Phonons and electron-phonon scattering in carbon nanotubes, Phys. Rev. B 65, 235412 (2002) 0163-1829 10.1103/PhysRevB.65.235412.
J. L. Mañes, Symmetry-based approach to electron-phonon interactions in graphene, Phys. Rev. B 76, 045430 (2007) 1098-0121 10.1103/PhysRevB.76.045430.
M. Vozmediano, M. Katsnelson, and F. Guinea, Gauge fields in graphene, Phys. Rep. 496, 109 (2010) 0370-1573 10.1016/j.physrep.2010.07.003.
F. Guinea, A. K. Geim, M. I. Katsnelson, and K. S. Novoselov, Generating quantizing pseudomagnetic fields by bending graphene ribbons, Phys. Rev. B 81, 035408 (2010) 1098-0121 10.1103/PhysRevB.81.035408.
N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. C. Neto, and M. F. Crommie, Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles, Science 329, 544 (2010) 0036-8075 10.1126/science.1191700.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless dirac fermions in graphene, Nature (London) 438, 197 (2005) 0028-0836 10.1038/nature04233.
P. San-Jose and E. Prada, Helical networks in twisted bilayer graphene under interlayer bias, Phys. Rev. B 88, 121408 (R) (2013) 1098-0121 10.1103/PhysRevB.88.121408.
D. K. Efimkin and A. H. MacDonald, Helical network model for twisted bilayer graphene, Phys. Rev. B 98, 035404 (2018) 2469-9950 10.1103/PhysRevB.98.035404.
M. Fleischmann, R. Gupta, F. Wullschläger, S. Theil, D. Weckbecker, V. Meded, S. Sharma, B. Meyer, and S. Shallcross, Perfect and Controllable Nesting in Minimally Twisted Bilayer Graphene, Nano Lett. 20, 971 (2020) 1530-6984 10.1021/acs.nanolett.9b04027.
B. Tsim, N. N. T. Nam, and M. Koshino, Perfect one-dimensional chiral states in biased twisted bilayer graphene, Phys. Rev. B 101, 125409 (2020) 2469-9950 10.1103/PhysRevB.101.125409.
Y.-Z. Chou, F. Wu, and S. Das Sarma, Hofstadter butterfly and Floquet topological insulators in minimally twisted bilayer graphene, Phys. Rev. Res. 2, 033271 (2020) 2643-1564 10.1103/PhysRevResearch.2.033271.
C. De Beule, F. Dominguez, and P. Recher, Aharonov-Bohm Oscillations in Minimally Twisted Bilayer Graphene, Phys. Rev. Lett. 125, 096402 (2020) 0031-9007 10.1103/PhysRevLett.125.096402.
C. De Beule, F. Dominguez, and P. Recher, Network model and four-terminal transport in minimally twisted bilayer graphene, Phys. Rev. B 104, 195410 (2021) 2469-9950 10.1103/PhysRevB.104.195410.
T. Vakhtel, D. O. Oriekhov, and C. W. J. Beenakker, Bloch oscillations in the magnetoconductance of twisted bilayer graphene, Phys. Rev. B 105, L241408 (2022) 2469-9950 10.1103/PhysRevB.105.L241408.
H. K. Pal, S. Spitz, and M. Kindermann, Emergent Geometric Frustration and Flat Band in Moiré Bilayer Graphene, Phys. Rev. Lett. 123, 186402 (2019) 0031-9007 10.1103/PhysRevLett.123.186402.
C. Moulsdale, A. Knothe, and V. Fal'ko, Kagome network of miniband-edge states in double-aligned graphene-hexagonal boron nitride structures, Phys. Rev. B 105, L201112 (2022) 2469-9950 10.1103/PhysRevB.105.L201112.
Y. Aharonov and A. Casher, Ground state of a spin-(Equation presented) charged particle in a two-dimensional magnetic field, Phys. Rev. A 19, 2461 (1979) 0556-2791 10.1103/PhysRevA.19.2461.
V. P. Gusynin and S. G. Sharapov, Unconventional Integer Quantum Hall Effect in Graphene, Phys. Rev. Lett. 95, 146801 (2005) 0031-9007 10.1103/PhysRevLett.95.146801.
N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Electronic properties of disordered two-dimensional carbon, Phys. Rev. B 73, 125411 (2006) 1098-0121 10.1103/PhysRevB.73.125411.
Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature (London) 438, 201 (2005) 0028-0836 10.1038/nature04235.
F. D. M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly", Phys. Rev. Lett. 61, 2015 (1988) 0031-9007 10.1103/PhysRevLett.61.2015.
A. M. J. Schakel, Relativistic quantum Hall effect, Phys. Rev. D 43, 1428 (1991) 0556-2821 10.1103/PhysRevD.43.1428.
I. Fialkovsky and D. Vassilevich, Quantum field theory in Graphene, Int. J. Mod. Phys. A 27, 1260007 (2012) 0217-751X 10.1142/S0217751X1260007X.
M. F. Lapa, Parity anomaly from the Hamiltonian point of view, Phys. Rev. B 99, 235144 (2019) 2469-9950 10.1103/PhysRevB.99.235144.
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009) 0034-6861 10.1103/RevModPhys.81.109.
P. Delplace, Topological chiral modes in random scattering networks, SciPost Phys. 8, 081 (2020) 2542-4653 10.21468/SciPostPhys.8.5.081.
P. Delplace, M. Fruchart, and C. Tauber, Phase rotation symmetry and the topology of oriented scattering networks, Phys. Rev. B 95, 205413 (2017) 2469-9950 10.1103/PhysRevB.95.205413.
M. Pasek and Y. D. Chong, Network models of photonic Floquet topological insulators, Phys. Rev. B 89, 075113 (2014) 1098-0121 10.1103/PhysRevB.89.075113.
T. Fukui, Y. Hatsugai, and H. Suzuki, Chern numbers in discretized brillouin zone: Efficient method of computing (spin) hall conductances, J. Phys. Soc. Jpn. 74, 1674 (2005) 0031-9015 10.1143/JPSJ.74.1674.
C. De Beule, F. Dominguez, and P. Recher, Effective Floquet model for minimally twisted bilayer graphene, Phys. Rev. B 103, 195432 (2021) 2469-9950 10.1103/PhysRevB.103.195432.
T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological characterization of periodically driven quantum systems, Phys. Rev. B 82, 235114 (2010) 1098-0121 10.1103/PhysRevB.82.235114.
M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Anomalous Edge States and the Bulk-Edge Correspondence for Periodically Driven Two-Dimensional Systems, Phys. Rev. X 3, 031005 (2013) 2160-3308 10.1103/PhysRevX.3.031005.
L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit, Observation of photonic anomalous floquet topological insulators, Nat. Commun. 8, 13756 (2017) 2041-1723 10.1038/ncomms13756.
D. Carpentier, P. Delplace, M. Fruchart, K. Gawedzki, and C. Tauber, Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals, Nucl. Phys. B 896, 779 (2015) 0550-3213 10.1016/j.nuclphysb.2015.05.009.
J. T. Chalker and P. D. Coddington, Percolation, quantum tunnelling and the integer Hall effect, J. Phys. C: Solid State Phys. 21, 2665 (1988) 0022-3719 10.1088/0022-3719/21/14/008.
B. Kramer, T. Ohtsuki, and S. Kettemann, Random network models and quantum phase transitions in two dimensions, Phys. Rep. 417, 211 (2005) 0370-1573 10.1016/j.physrep.2005.07.001.
A. C. Potter, J. T. Chalker, and V. Gurarie, Quantum Hall Network Models as Floquet Topological Insulators, Phys. Rev. Lett. 125, 086601 (2020) 0031-9007 10.1103/PhysRevLett.125.086601.
T. Low, F. Guinea, and M. I. Katsnelson, Gaps tunable by electrostatic gates in strained graphene, Phys. Rev. B 83, 195436 (2011) 1098-0121 10.1103/PhysRevB.83.195436.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.