[en] Static soliton bound states in nonlinear systems are investigated analytically and numerically in the framework of the parametrically driven and damped nonlinear Schrödinger equation. We find that the ordinary differential equations, which determine bound soliton solutions, can be transformed into the form resembling the Schrödinger-like equations for eigenfunctions with fixed eigenvalues. We assume that a nonlinear part of the equations is close to the reflectionless potential well occurring in the scattering problem associated with the integrable equations. We show that symmetric two-hump soliton solution is quite well described analytically by the three-soliton formula with the fixed soliton parameters, depending on the strength of parametric pumping and the dissipation constant.
Disciplines :
Physique
Auteur, co-auteur :
Bogdan, M.M. ✱; B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine
CHARKINA, Oksana ✱; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
✱ Ces auteurs ont contribué de façon équivalente à la publication.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Structure of soliton bound states in the parametrically driven and damped nonlinear systems
Titre traduit :
[en] Structure of soliton bound states in the parametrically driven and damped nonlinear systems
Date de publication/diffusion :
07 décembre 2022
Titre du périodique :
Low Temperature Physics
ISSN :
1063-777X
eISSN :
1090-6517
Maison d'édition :
American Institute of Physics, Etats-Unis - New York
Volume/Tome :
48
Pagination :
1062-1070
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Physics and Materials Science
Projet FnR :
FNR13718694 - Quantum-based Machine Learning For Flexible Molecules, 2019 (01/09/2020-31/08/2023) - Igor Poltavskyi
A. S. Davydov and N. I. Kislukha, Phys. Status Solidi B 59, 465 (1973). 10.1002/pssb.2220590212
A. S. Davydov, Phys. Scr. 20, 387 (1979). 10.1088/0031-8949/20/3-4/013
L. S. Brizhik and A. S. Davydov, Fiz. Nizk. Temp. 10, 748 (1984) [Sov. J. Low Temp. Phys. 10, 392 (1984)].
L. S. Brizhik and A. A. Eremko, Physica D 81, 295 (1995). 10.1016/0167-2789(94)00206-6
V. E. Zakharov, V. S. L'vov, and S. S. Starobinets, Sov. Phys. Usp. 17, 896 (1975). 10.1070/PU1975v017n06ABEH004404
M. M. Bogdan, A. M. Kosevich, and I. V. Manzhos, Fiz. Nizk. Temp. 11, 991 (1985) [Sov. J. Low Temp. Phys. 11, 547 (1985)].
I. V. Barashenkov, M. M. Bogdan, and V. I. Korobov, Europhys. Lett. 15, 113 (1991). 10.1209/0295-5075/15/2/001
J. W. Miles, J. Fluid Mech. 148, 451 (1984). 10.1017/S0022112084002433
J. Wu, R. Keolian, and I. Rudnick, Phys. Rev. Lett. 52, 1421 (1984). 10.1103/PhysRevLett.52.1421
A. Mecozzi, W. L. Kath, P. Kumar, and C. G. Goedde, Optics Lett. 19, 2050 (1994). 10.1364/OL.19.002050
M. Bondila and I. V. Barashenkov, and M. M. Bogdan. Physica D 87, 314 (1995). 10.1016/0167-2789(95)00126-O
S. Longhi, G. Steinmeyer, and W. S. Wong, J. Opt. Soc. Am. B 14, 2167 (1997). 10.1364/JOSAB.14.002167
J. R. Yan and Y. P. Mei, Europhys. Lett. 23, 335 (1993). 10.1209/0295-5075/23/5/006
S. Longhi, Phys. Rev. E 53, 5520 (1996). 10.1103/PhysRevE.53.5520
B. A. Malomed, Phys. Rev. E 47, 2874 (1993). 10.1103/PhysRevE.47.2874
X. Wang and R. Wei, Phys. Lett. A 192, 1 (1994). 10.1016/0375-9601(94)91005-7
W. Wang, X. Wang, J. Wang, and R. Wei, Phys. Lett. A 219, 74 (1996). 10.1016/0375-9601(96)00406-9
X. Wang and R. Wei, Phys. Rev. Lett. 78, 2744 (1997). 10.1103/PhysRevLett.78.2744
P. Kolodner, Phys. Rev. A 44, 6448 (1991). 10.1103/PhysRevA.44.6448
P. Kolodner, Phys. Rev. A 44, 6466 (1991). 10.1103/PhysRevA.44.6466
M. V. Tratnik and J. E. Sipe, Phys. Rev. A 38, 2011 (1988). 10.1103/PhysRevA.38.2011
V. M. Eleonskii and N. E. Kulagin, Sov. Phys. JETP 58, 833 (1983).
R. Hirota, Direct Method of Finding Exact Solutions of Nonlinear Evolution Equations, in Bäcklund Transformations, Lecture Notes in Mathematics, edited by A. Dold and B. Eckmann (Springer-Verlag, New York, 1980), Vol. 515, pp. 40-68.
X. Wang and R. Wei, Phys. Rev. E 57, 2405 (1998). 10.1103/PhysRevE.57.2405
X. Wang, Phys. Rev. E 58, 7899 (1998). 10.1103/PhysRevE.58.7899
X. Wang, Physica D 127, 13 (1999). 10.1016/S0167-2789(98)90291-3
I. V. Barashenkov and E. V. Zemlyanaya, Phys. Rev. Lett. 83, 2568 (1999). 10.1103/PhysRevLett.83.2568
I. V. Barashenkov and E. V. Zemlyanaya, Phys. Rev. E 83, 056610 (2011). 10.1103/PhysRevE.83.056610
N. N. Akhmediev and A. Ankiewicz, Chaos 10, 600 (2000). 10.1063/1.1286263
L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1977).