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ABSTRACT

Static soliton bound states in nonlinear systems are investigated analytically and numerically in the framework of the parametrically driven
and damped nonlinear Schrödinger equation. We find that the ordinary differential equations, which determine bound soliton solutions,
can be transformed into the form resembling the Schrödinger-like equations for eigenfunctions with fixed eigenvalues. We assume that a
nonlinear part of the equations is close to the reflectionless potential well occurring in the scattering problem, associated with the integrable
equations. We show that symmetric two-hump soliton solution is quite well described analytically by the three-soliton formula with the
fixed soliton parameters, depending on the strength of parametric pumping and the dissipation constant.
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INTRODUCTION

Progress of the theory of nonlinear phenomena is directly
related to the emergence of the soliton concept. Academician
A. S. Davydov is one of the founders of the nonlinear science
schools in Ukraine. The Davydov soliton is a bright example of the
application of the soliton concept to the nonlinear transport phe-
nomena of the quantum quasiparticles in biophysics.1,2 The theore-
ticians of Davydov’s scientific school continue the best traditions of
their teacher, describing a wide range of the soliton effects in bio-
physics and condensed matter.3,4 Exploiting the soliton description,
based on the use of the nonlinear Schrödinger equation and its
modifications, Davidov’s school has created a new direction of
investigation of nonlinear phenomena. Remembering with deep
respect A. S. Davydov as a true science classic, we dedicate this
paper to his memory on the 110th anniversary of his birth.

One of the generalizations of the nonlinear Schrödinger equa-
tion arises when the parametric pumping and dissipation are taken
into account. At first, the corresponding three-dimensional equa-
tion appeared in the theory of parametric instability of spin waves.5

The one-dimensional variant of the equation has been used for the
description of dynamics of the parametrically driven soliton
(breather) in low-dimensional ferromagnets.6,7 The 1D equation is

also applicable to a large variety of weakly nonlinear physical
systems, beginning from the long channel with water under condi-
tions of the Faraday resonance, where a nonpropagating hydrody-
namic soliton has been observed,8,9 and up to nonlinear fibers with
optical solitons.10 The equation has been called the parametrically
driven, damped nonlinear Schrödinger equation (PDNLSE).7 This
equation has become a useful tool for the numerical study of
regular and chaotic internal dynamics of the parametrically driven
soliton under dissipation.11 In the framework of the PDNLSE, the
oscillatory instability of the soliton has been revealed and
explained. The soliton stability diagram has been constructed, indi-
cating a rich pattern of routes to chaos in the soliton internal
dynamics in accordance with Feigenbaum and quasiperiodic sce-
narios.11 However, the variational approach to the description of
the internal soliton dynamics could not give a quantitative coinci-
dence with numerical results for the soliton stability boundary [see,
e.g., Ref. 12]. It means the internal structure of the stable paramet-
ric soliton may be more complicated than it seems. It has been
shown13 that two identical well-separated parametric solitons in the
case of absence of the dissipation attract each other. Hence, they
rather transform into a single stable soliton under influence of the
dissipation than could form a static soliton bound state.14 At the
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same time in Ref. 15 the attempt to explore the interactions of soli-
tons has led to the conclusion on the principal absence of bound
states of two identical solitons in the PDNSLE. The fact, that this is
wrong, became apparent soon after their evidence in the hydrody-
namic Faraday resonance experiments16,17 and later, when the
stable bound states have been found directly in numerical simula-
tions of the PDNLSE.18 Much earlier double soliton structures with
well-separated humps have been observed experimentally in binary
fluid mixtures.19,20

In the present work, we study the fine structure of the sym-
metric double-hump solutions of the PDNLSE. At first, we formu-
late this equation in terms of magnetism and reduce it to an
autonomic one, namely called the PDNLSE, and adduce its exact
stable and unstable one-soliton solutions and review numerical and
analytical results concerning the stable double-hump soliton solu-
tions. Then we propose an analytical approach to solving the gov-
erning system of ordinary differential equations in order to
reproduce the static solutions found numerically. We show that the
double-hump solution is described quite well by the three-soliton
formula, typical for the integrable equations, with the fixed param-
eters, depending on the strength of parametric pumping and the
dissipation constant. In conclusion, we discuss a possibility of a
new ansatz in form of the multisoliton solution in order to describe
stability properties and complex internal dynamics of the soliton
bound states in the PDNLSE.

EXACT STATIC SOLITON SOLUTIONS OF THE PDNLSE
AND ITS REDUCTIONS

The Landau–Lifshitz equation for the magnetization, describ-
ing the quasi-dimensional easy-plane anisotropic ferromagnet with
a magnetic field in the easy plane, can be reduced in the weakly
nonlinear limit to the dimensionless equation, as shown in Refs. 6
and 7:

iΨt þΨxx þ 2jΨj2Ψ ¼ hexp(2it)Ψ*�iγΨ: (1)

Here the real and imaginary parts of the function Ψ(x,t) are
proportional to small deviations of the unit magnetization vector
m(x,t), namely, projections mz and my, respectively, from the direc-
tion of the constant magnetic field, lying in the easy-plane and
being parallel to the alternating field. In Refs. 6, 7 all the relations
are presented between the dimensionless time t, coordinate x along
the chain, the strength of parametric pumping h and the dissipa-
tion coefficient γ and corresponding dimensional parameters,
including the anisotropy constant, the constant magnetic field, the
alternating microwave field and the relaxation constant. Asterisk
denotes the complex conjugate variable.

The parametric character of the driving force is evident
because the resonant oscillation in the system occurs at half of the
pumping frequency. After substitution Ψ(x,t) = ψexp(it) to Eq. (1),
we obtain the autonomic equation

iψt þ ψxx � ψ þ 2jψj2ψ ¼ hψ*�iγψ, (2)

which is called the PDNLSE and describes many nonlinear phe-
nomena under parametric resonance conditions. The resonant

nonlinear oscillation behaves as a small amplitude breather with a
steady profile ψ(x), which is exponentially localized in space, as it
is clearly seen, e.g., on a wall of a water tank in the hydrodynamic
experiments under the Faraday resonance.9 The exact one-soliton
solutions of Eq. (2) are well-known:5–8

ψþ(x) ¼
κþ

cosh(κþx)
exp(�iθ), (3)

ψ�(x) ¼ �i
κ�

cosh(κ�x)
exp(iθ), (4)

where the parameters of soliton amplitudes and phase are fixed as

κ+¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � γ2

pq
, θ ¼ 1

2
arcsin

γ

h

� �
: (5)

It has been shown in Ref. 7 that soliton ψ�(x) is absolutely
unstable, and soliton ψ+(x) is stable in the definite region on the
plane of the parameters h and γ. Outside the stability domain, it
becomes unstable with increasing the driving force, because of the
resonance of its two internal modes.7 Such a scenario of the emer-
gence of the instability mode in the internal soliton dynamics in
continuous and discrete systems is now known as the oscillatory
instability. Above the found stability boundary, coming through the
cascade of bifurcations, the soliton ψ+(x) demonstrates a transition
to temporary chaos in its internal dynamics, preserving spatial
coherence.11 Besides this Feigenbaum scenario, the soliton can also
undergo destruction through the quasi-periodic route to chaos.

In the dissipation-free case, the system of ordinary differential
equations, determining any static solution ψ(x) = ψ1 + iψ2, takes
the form

d2

dx2
þ 2(ψ2

1 þ ψ2
2)

� �
ψ1 ¼ μ2þ ψ1,

d2

dx2
þ 2(ψ2

1 þ ψ2
2)

� �
ψ2 ¼ μ2� ψ2,

(6)

where parameters μ+¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1+ h

p
. When γ = 0 and, hence, the

parameter θ=0, the solutions (3) and (4) become purely real and
imaginary functions, respectively. In this case, they are trivial one-
component soliton solutions because the second component is
equal to zero identically. There is the non-trivial solution of the
system (6) with components in the form of bright and dark soli-
tons:

ψ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þ � 1

2
μ2�

r
sech(qx),

ψ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
(μ2� � q2)

r
tanh(qx),

(7)

where q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þ �μ2�

p ¼ ffiffiffiffiffi
2h

p
In result, the corresponding doubled

density ρ ¼ 2(ψ2
1 þ ψ2

2) can be written in the form ρ ¼
μ2� þ 2q2sech2(qx) which makes the functions (7) obvious solutions
of the system (6).
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For the case of the fixed value of the parameter h = h0 = 3/5,
i.e., when μ� ¼ μþ/2 ¼ ffiffiffiffiffiffiffi

2/5
p

, there is the two-component solution
of the form21

ψ1 ¼
ffiffiffi
3

p
μ�sech

2(μ�x),

ψ2 ¼
ffiffiffi
3

p
μ�tanh(μ�x)sech(μ�x):

(8)

Moreover, it has been found out that the system of coupled Eqs. (6)
is completely integrable because it possesses two independent inte-
grals of motion.22 In Ref. 4, using the elliptic coordinates presenta-
tion of the components ψ1 and ψ2, the solution of the system has
been written in quadratures. As a result, it has been shown, that in
addition to the trivial solitons (3) and (4), and besides special ones
(7) and (8), there is the general form of the double-soliton solu-
tions, named the bisolitons,4 which complete the set of localized
solutions. They correspond to the specific choice of values of inte-
grals of motion of Eq. (6), that ensures vanishing the soliton solu-
tions at infinity.

For the first time, the explicit form of double solitons of the
system (6) has been found in Ref. 21 by the Hirota direct method
for finding the soliton solutions.23 After the substitution to Eq. (6)
the function transformation:

ψ1 ¼
f1

Φ
, ψ2 ¼

f2

Φ
, (9)

the system can be reduced to the Hirota bilinear equations

D2
xf1 �Φ ¼ μ2þf1 �Φ, D2

xf2 �Φ ¼ μ2�f2 �Φ,
D2
xΦ �Φ ¼ 2(f2

1 þ f2
2),

(10)

where the new functions f1 and f2 are assumed to relate to the
denominator function Φ by the third equation and the Hirota
differential operator is defined as follows:

D2
xf1 � f2 ¼

@

@x
� @

@x0

� �2

f1(x)f2(x
0)

�����
x¼x0

: (11)

The soliton solutions of Eq. (6) are expressed in terms of the stan-
dard finite series of exponents.23 They can be written as symmetric
and antisymmetric functions in the explicit form:

ψ1 ¼
2μþ

ffiffiffi
σ

p
cosh(μ�x)

cosh((μþþμ�)x)þ σcosh((μþ�μ�)x)
, (12)

ψ2 ¼
2μ�

ffiffiffi
σ

p
sinh(μþx)

cosh((μþþμ�)x)þ σcosh((μþ�μ�)x)
, (13)

where the parameter σ ¼ (μ þ þ μ�)/(μþ�μ�) As noted in
Ref. 21, every equation in the system (6) can be considered as
the Schrödinger-like equation of the corresponding eigenvalue
problem with the symmetric “potential” V≡−ρ =−2(ψ1

2 + ψ2
2).

Continuing this analogy, we introduce the normalized eigenfunctions
~ψ1 ¼ ψ1/

ffiffiffiffiffiffiffiffi
2μþ

p
and ~ψ2 ¼ ψ2/

ffiffiffiffiffiffiffiffi
2μ�

p
: Then the potential, written in

terms of the eigenfunctions, takes the form V ¼�4(μþ ~ψ 2
1 þμ�~ψ

2
2 )

The value of the potential at the origin is expressed through the
eigenvalues as follows: V(0) = −2(μ+2 −μ−2 ) = −4 h. It is easy to see
that the potential well has two equivalent minima for the parameter
values of 0 < h < 1/2 and only one minimum for 1/2 ≤ h < 1, and
when h = 1/2 then U(0) = −2.

Finally note, that having the double-hump profile, the quantity
jψ(x)j2 ¼ ψ2

1 þ ψ2
2 can be considered either as the two-peak local-

ized density of spin excitations6 or interpreted as the electric bisoli-
tons in molecular chains,4 depending on physical applications.

THREE-SOLITON APPROACH TO BOUND STATES IN
DAMPED SYSTEMS WITH PARAMETRIC PUMPING

The numerical investigations of the PDNLSE, stimulated by
the hydrodynamic Faraday resonance experiments,16–18 have
revealed, besides the complex internal one-soliton dynamics, also
the formation of stable complexes of two solitons and their mutual
dynamical transformation.24–28 The direct approach to finding the
stable static double-hump solitons consists in simulation of the
autonomic PDNLSE with suggesting that the parameters h and γ
lie in the soliton stability region.26 The stable solitons manifest
themselves as stationary attractors in the dynamics simulation.

Here we concentrate only on the fact of the existence of the
static solutions of the PDNLSE for symmetric double-hump soli-
tons. Both stable and unstable bound soliton configurations can be
found numerically by solving the following system of nonlinear
ordinary equations

d2

dx2
þ 2(ψ2

1 þ ψ2
2)

� �
ψ1 ¼ μ2þ ψ1 � γψ2, (14)

d2

dx2
þ 2(ψ2

1 þ ψ2
2)

� �
ψ2 ¼ μ2� ψ2 þ γψ1: (15)

Unfortunately, the analytical description of these solutions by
the use of the variational approach proposed in Ref. 27 appeared to
be unsatisfactory quantitatively. Here we aim to find an appropriate
analytical approximation for the static complex solutions. Before
doing that, we note the main lack of the variational ansatz proposed
in Ref. 27. Starting with the fact that the lonely soliton ψ+(x) is stable
and the lonely soliton ψ−(x) is absolutely unstable, the authors of
Ref. 27 neglected the latter at all. At the same time, it is easy to see
that the asymptotics of the found double-hump numerical solutions
decay more slowly than those of ψ+(x) but exactly like those of
ψ−(x). That is why in order to deal with the bound soliton solution,
we consider a general structure of the static solutions

ψ(x) ¼ ψ1 þ iψ2 ¼ uexp(�iθ)� ivexp(iθ) (16)

by the introduction of the new functions u(x) and v(x) instead ψ1 and
ψ2, where the parameter θ is defined by Eq. (5). As seen from
Eq. (16), we consider the generalization for any static solution as a
simple sum or a superposition of two types of solitons, as it would be
in the case of single solitons ψ+(x) and ψ−(x) [compare Eq. (16) with
Eqs. (3) and (4)]. However, in fact, we present the real and imaginary
parts of the function ψ(x) in the form of the linear combination of
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new functions u and v as follows:

ψ1 ¼ u cos θþ v sin θ, (17)

ψ2 ¼ �u sin θ� v cos θ, (18)

in order to exclude the coupling of the Eqs. (14) and (15) by the
linear terms. At first glance, the transformation is similar to the rota-
tion, but the corresponding matrix is not unitary,

Y ¼ cos θ sin θ
� sin θ � cos θ

� �
(19)

because its determinant det Y = −cos 2θ. However, it is easy to find
that the inverse transformation of the above functions is the follow-
ing:

u ¼ (ψ1 cos θþ ψ2 sin θ)/ cos 2θ, (20)

v ¼ �(ψ1 sin θþ ψ2 cos θ)/ cos 2θ, (21)

therefore, the inverse matrix Y−1 = Y/cos 2θ, i.e., the matrix
M = M−1 =Y/

ffiffiffiffiffiffiffiffiffiffiffiffi
cos 2θ

p
and M2 = I, where I is the identity matrix.

After the transformation (17) and (18), instead of Eq. (14) and (15),
we obtain the following system of the Schrödinger-like equations:

d2

dx2
þ 2(u2 þ λuv þ v2)

� �
u ¼ κ2þu, (22)

d2

dx2
þ 2(u2 þ λuv þ v2)

� �
v ¼ κ2�v, (23)

where the parameter λ = 2γ/h. Indeed, if we find the solutions u and
v and put them in the nonlinear part, and introduce the effective
potential

U ¼ �2(u2 þ λuv þ v2), (24)

then we can present Eqs. (22) and (23) as the equations of the spectral
problem for the Schrödinger operator

L ¼ � d2

dx2
þ U , (25)

Lu ¼ �κ2þu, Lv ¼ �κ2�v: (26)

Thus it appears that the function u(x) is the operator eigenfunction,
corresponding to the eigenvalue �κ2þ, and the function v(x) is the
eigenfunction, corresponding to the eigenvalue �κ2�, respectively.
Note that the explicit expressions of the eigenvalues are given by
Eq. (5). Now it is clear that many arguments, which have been rele-
vant in the case of the system (6), can be used to analyze the proper-
ties of the solutions u(x) and v(x).

However, from the very beginning, it is hard to expect that the
initial system of Eq. (14) and (15), and hence, the system (26),
could be solved exactly because now no integrals of motion are

available, which allowed finding the complete solution of the
dissipation-free problem. Nevertheless, it is possible to imagine
what kind of localized solutions the system (26) possesses. Since we
are interested in the symmetric potential U(x) and κ− < κ+, then
the solution u(x) can be the even eigenfunction of a ground state of
the Schrödinger operator L, having no zeroes. The function v(x)
can also appear to be the even eigenfunction of the operator, but
then it has to correspond to the second excited state of the operator
L. Therefore, in contrast to Eq. (6), the potential well (24) can
contain three discrete levels and, hence, three discrete eigenvalues
can exist. The eigenvalue −κ2, corresponding to the odd eigenfunc-
tion χ(x) and to the first excited state, is placed between two eigen-
values of Eq. (26) and hence κ− < κ < κ+. Surely, because of the
nonlinearity of the problem (22)–(23), the amplitudes of the func-
tions u(x) and v(x) have definite values, whereas the function χ(x)
is considered simply as the eigenfunction of the operator L with the
effective potential U(x) and it can be normalized to unity:

Lχ ¼ �κ2χ;

ð1

�1
χ2dx ¼ 1: (27)

The potential well U (x) can be always presented as follows:

U(x) ¼ �2
d2

dx2
ln F ¼ �D2

xF � F
F2

, (28)

where the function F(x) is found by the consequent integration of
the equation

d
dx

1
F
dF
dx

� �
¼ u2 þ λuv þ v2, (29)

if the functions in the right-hand side of Eq. (29) are known. Then
we introduce the functions g and f as follows:

g ¼ uF, f ¼ vF, (30)

and transform Eq. (29) into the Hirota bilinear equation

D2
xF � F ¼ 2(g2 þ λgf þ f 2), (31)

and finally, reduce Eqs. (22) and (23) to the standard form of the
bilinear equations:

D2
xg � F ¼ κ2þg � F, D2

xf � F ¼ κ2�f � F: (32)

Comparing the system of Eqs. (31) and (32) and the system
(10), we see that the principal difference between them consists in
the presence of the term with dissipation coefficient in the r.h.s. of
Eq. (31). This does not allow to solve exactly Eqs. (31) and (32) by
the Hirota direct method and to find the solutions in the standard
form of finite series of exponents.23

Nevertheless, we can test the proximity of the numerical solu-
tions of Eqs. (22) and (23) to exact solutions of the Hirota bilinear
equations, which are true for the case of three solitons.23,29
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We write the three-soliton bilinear equations in the form:

D2
xfþ�F0 ¼ κ2þfþ�F0, D2

xf��F0 ¼ κ2�f��F0,

D2
xf � F0 ¼ κ2f � F0, (33)

D2
xF0 � F0 ¼ 2(f2

þ þ f2 þ f2
�), (34)

where the explicit forms of their functions f+, f, and f− are as
follows:

fþ¼Aþ(cosh((κþ κ�)x)þ aþcosh((κ� κ�)x)), (35)

f�¼A�(cosh((κþþκ)x)� a�cosh((κþ�κ)x)), (36)

f ¼ A � (sinh((κþþκ�)x)þ asinh((κþ�κ�)x)): (37)

The three-soliton solutions in the initial form have arbitrary
values of their three parameters but we specify them so that they are
exactly equal to the eigenvalues κ+, κ, κ− of the operator L from
Eqs. (24)–(26). The coefficients in the above formulas are the following:

aþ¼ κþ κ�
κ� κ�

, a�¼ κþþκ

κþ�κ
, a ¼ κþþκ�

κþ�κ�
, (38)

Aþ¼2κþ
ffiffiffiffiffiffiffiffi
a�a

p
, A�¼2κ�

ffiffiffiffiffiffiffiffi
aþa

p
, A ¼ �2κ

ffiffiffiffiffiffiffiffiffiffiffi
aþa�

p
: (39)

The function F0 looks like

F0 ¼ cosh((κþþκþ κ�)x)þ aþacosh((κþþκ� κ�)x)
þ aþa�cosh((κþþκ��κ)x)þ a�acosh((κþκ��κþ)x): (40)

Using this function, we construct the potential well

U0(x) ¼ �2
d2

dx2
ln F0 ¼ �D2

xF0 � F0
F2
0

, (41)

and the Schrödinger operator

L0 ¼ � d2

dx2
þ U0(x): (42)

Its normalized eigenfunctions naturally obey the equations

L0wþ¼ � κ2þwþ, L0w ¼ �κ2w, L0w� ¼ �κ2�w�, (43)

and are built from the above functions (35)–(40) as follows:

wþ¼ 1ffiffiffiffiffiffiffiffi
2κþ

p fþ
F0

, w ¼ 1ffiffiffiffiffi
2κ

p f

F0
, w�¼ 1ffiffiffiffiffiffiffiffi

2κ�
p f�

F0
: (44)

These three functions, complemented by the continuous spectrum
eigenfunctions wk(x), constitute the complete orthonormal basis.
Note that the special choice of the coefficients in Eqs. (39) and (44)
assures the function normalization to unity.

Dividing Eq. (34) by F2
0 and using the definition (41) for

U0(x), we obtain the explicit spatial dependence of the potential
through the normalized eigenfunctions (44):

U0(x) ¼ �4(κþw2
þ þ κw2 þ κ�w2

�): (45)

Note that the potential value at the origin and its integral are
expressed simply through the eigenvalues:

U0(0) ¼ �2(κ2þ � κ2 þ κ2�): (46)

J0 ¼
ð1

�1
U0ðxÞdx ¼ �2 κþ þ κþ κ�ð Þ: (47)

Now we can conclude that two Hermitian operators L and L0 have
the completely identical set of eigenvalues, since, besides the coinci-
dence of three discrete levels, they have the same continuous spec-
trum εk = k2 due to vanishing the potential at infinity. It means
that there is the unitary operator S that transforms the orthonormal
basis of eigenfunctions of operator L0 to the orthonormal basis of
operator L. In particular, the normalized eigenfunctions, corre-
sponding to discrete levels, are connected by relations:

uþ(x) ¼ 1ffiffiffiffiffiffi
Nu

p u(x) ¼ Swþ, χ(x) ¼ Sw(x),

v�(x) ¼ 1ffiffiffiffiffiffi
Nv

p v(x) ¼ Sw�, (48)

where the normalization constants are as follows:

Nu ¼
ð1

�1
u2ðxÞdx; Nv ¼

ð1

�1
v2ðxÞdx: (49)

As known,30 after applying consequently the unitary operation
to the operator L0 we transform it to the operator L = SL0S

−1.
At last, using the eigenfunctions u+(x), χ(x), and v−(x) we can

construct the potential ~U(x)as the analogue of formula (45) for the
potential U0(x) :

~U(x) ¼ �4(κþu2þ þ κχ2 þ κ�v2�): (50)

In general these potentials are different, but, as it follows from the
relations (48) between the eigenfunctions and properties of the
unitary transformation, the integral J of the potential (50) is equal
to J0 of Eq. (47), and hence, we find for it the following useful
expression:

~J ¼
ð1

�1

~U(x)dx ¼ �2(κþþκþ κ�): (51)

In the next section, we compare all the potentials and find the
explicit analytical approximation of the functions u(x) and v(x) for
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the above pairs of numerical values of the parameters of the
strength of pumping and the dissipation coefficient.

QUANTITATIVE DESCRIPTION OF STATIC SOLITON
BOUND STATES IN THE PDNLSE SYSTEMS

The numerical solutions for static double-hump solitons and
the effective procedure of finding the soliton complexes in the
framework of Eqs. (6) have been found in Ref. 27. As shown in
Ref. 28, a domain of existence of such solutions begins once the
dissipation parameter is not zero and at the pumping strength
values lying above the threshold curve hth(γ) > γ. The stability
region of these static solutions is located at large enough values of
the dissipation, as it has been found by simulations of the
PDNLSE, and it is partly confirmed by the direct stability analy-
sis.25,26,28 In this section, we intend to analyze the structure of the
static solutions and to propose an analytical approximation for
them without the variational approach. Therefore, we consider the
solutions at the parameter values just below the stability boundary
and inside the stability region. The choice of the parameters h and
γ aims to compare our results with those of Refs. 26 and 27.

We have solved numerically Eqs. (22) and (23) and found the
solutions in terms of the functions u(x) and v(x). These functions
are presented below for values of parameters h = 0.9 and γ = 0.565,
and h = 1.05 and γ = 0.6, respectively.

The first pair of the investigated parameters has been shown27

to belong to the instability region, and it is placed just near the
stability boundary of the double-hump soliton. After finding
the solutions u(x) and v(x) for the parameter values h = 0.9 and γ
= 0.565, using the transformation (17) and (18), we revert exactly
to the results for the real and imaginary parts of the function ψ(x)
(see Fig. 1 in Ref. 27). In terms of the functions ψ1 and ψ2 the
static solutions look like the two-soliton bound state. On the other
hand, considering the system of the Schrödinger-like Eqs. (22)

and (23) prompts the other kind of classification of two-
component soliton solution. It is easy to see from Fig. 1, that u(x)
(black line 1) is the eigenfunction of the ground state with the eigen-
value �κ2þ and v(x) (red line 2) is the eigenfunction with the eigen-
value �κ2� of the second excited state of the Schrödinger operator L,
respectively. Remembering the representation (16) and the properties
of single solitons (3) and (4), we can classify the bound soliton struc-
ture as the superposition of complex generalizations of solitons ψ+

and ψ−, which differ in character of localization, in particular, by the
fast and slow decaying asymptotics, respectively.

The numerical values of the functions u and v at the origin are
the following: u0 = 1.10407 and v0 = −0.38472. We do not show
more digits after the decimal point here and further but note that
calculations performed have required a very high accuracy for the
initial conditions and parameters. Using Eq. (24), we construct the

FIG. 1. The numerical soliton solutions u(x) (black line 1) and v(x) (red line 2)
as the even eigenfunctions of the effective Schrödinger operator L. Its odd nor-
malized function χ(x) denotes as the blue line 3. The parameters of the
pumping strength and dissipation are equal as h = 0.9 and γ = 0.565.

FIG. 2. The general look (a) of the potential wells and their enlarge portions (b)
between the origin and the minima for distinguishing the lines. The potential
wells U (black line 1) and U0 (red line 2) are for the Schrödinger operators L
and L0, respectively. The potential U1 (blue line 3) is calculated in the one-mode
approximation. The parameters of the pumping strength and dissipation are
equal as h = 0.9 and γ = 0.565.
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potential well U (x) for this case and show it as the black line 1 in
Fig. 2. Now, we are able to find the eigenfunction χ(x) for the first
excited state of the operator L with the potential U(x). The normal-
ized odd eigenfunction χ(x) is shown in Fig. 1 as the blue line 3. Its
eigenvalue −κ2 is found numerically, and finally, we obtain the
parameter κ = 1.08625. The calculated values of the parameters κ+
and κ− of Eqs. (5) are 1.30405 and 0.54722, respectively. With the
knowledge of κ+, κ and κ− we can use explicit expressions (35)–(41)
for the construction of the corresponding three-soliton solution and
the potential well U0 (x), and the normalized eigenfunctions w+, w,
and w−. The potential U0 (x), given by formula (41), is indicated by
the red line 2 in Fig. 2. The proximity of the potentials U (x) and
U0 (x), calculated numerically by Eq. (24) and analytically by
Eq. (41), respectively, is quite well. This fact points out that the
eigenfunctions (44) can be a very good first approximation for the
eigenfunctions of the system (26) with the right asymptotic behavior.
Now it is clear that the unitary operator S = exp(iR), introduced
in Eqs. (48), is close to the identity operator. Therefore the following
operator expansions hold: S ≅ I + iR and S−1 ≅ I − iR, and
L ≅ L0 − i[L0, R], where R is a “small” Hermitian operator30 and
the square bracket means the commutator. In result, it is natural to
replace u+ and v+ by w+ and w−, respectively, and to represent for
functions u(x) and v(x) in the form

u(x) ¼ u0wþ(x)/wþ(0), v(x) ¼ v0w�(x)/w�(0): (52)

We use the simple condition of the equality of amplitudes of the
numerical solution and the analytical expression at the origin. Then
we put them into Eq. (24) and find the approximate form of the
potential well U1(x). This potential is shown as the blue line 3 in
Fig. 2, and it reproduces quiet well the numerical result and is dis-
tinctly better than the curve U0 (x) at the origin and at |x| > 3.

By the next step, we calculate the constants Nu and Nv and
find the normalized eigenfunctions u+ (x) and v− (x) from Eq. (44).

With the addition of the eigenfunction χ(x) we construct the
potential Ũ(x) by the use of the formula (50) and make sure that it
differs from U0(x) to the same extent as the orthonormal basis
functions of operators L and L0, being related by the unitary trans-
formation, differ each other. However, it turns out remarkably that
the potential Ũ(x) practically coincides with U(x) obtained from
Eq. (24) and shown in Fig. 2 by the black line. Consequently, the
integral J of the potential U (x) can be estimated as J ¼ ~J ¼ J0.

The second pair of the parameters h = 1.05 and γ = 0.6 is
placed inside the stability region, and numerical simulation demon-
strates surviving the static double-hump solution in the PDNLSE.26

We repeat the above procedure of finding the potentials U, U0, and
U1 for this couple of the strength of pumping and dissipation coef-
ficient. The results of the numerical solution of the system of
Eqs. (22) and (23) for the functions u(x) and v(x) are presented in
Fig. 3. Now, the function u(x) (black line 1) has the double-hump
shape and decays much faster than the function v(x) (red line 2)
because of a large difference of κ+ = 1.36443 and κ − = 0.37191.
The numerical values for the functions u and v at the origin are the
following: u0 = 0.77424 and v0 = −0.23201. We construct the
potential well U (x) for this case by using Eq. (24) and present it as
the black line in Fig. 4. Then, we find the odd eigenfunction χ(x)
for the first excited state of the operator L with the obtained poten-
tial U (x). The normalized eigenfunction χ(x) is shown in Fig. 3 as
the blue line 3. Its eigenvalue −κ2 is found numerically and, due to
the deep double-well form of the potential U(x) the value of
κ = 1.26341 appears to be close to the parameter κ+. As before,
with the knowledge of, κ+, κ, and κ− we employ Eq. (35)–(41)
for construction of the three-soliton solution and the potential well
U0(x), as well as the normalized eigenfunctions w+, w, and w−.
The potential U0 (x), found from formula (41), is shown as the red
line in Fig. 4. The potentials U (x) and U0 (x) are close enough but
definitely different at the origin. Therefore, the analytical formulas
(35)–(41) do not give the exact solution of the system (26) about

FIG. 3. The numerical soliton solutions u(x) (black line 1) and v(x) (red line 2)
as the even eigenfunctions of the effective Schrödinger operator L. Its odd nor-
malized function χ(x) denotes as the blue line 3. The parameters of the
pumping strength and dissipation are equal as h = 1.05 and γ = 0.6.

FIG. 4. The potential wells U (black line) and U0 (red line) are for the
Schrödinger operators L and L0, respectively. The potential U1 (blue line) is cal-
culated in the one-mode approximation. The mutual arrangement of the lines
are the same as in Fig. 2. The parameters of the pumping strength and dissipa-
tion are equal as h = 1.05 and γ = 0.6.
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what one could think for the pair of parameters h and γ close to
the previous first due to the fine proximity of the corresponding
potentials. Nevertheless, the eigenfunctions (44) appear to be again
a good approximation for the eigenfunctions of the system (26)
owing to the right asymptotic behavior. We use the expressions
(52) for functions u(x) and v(x), and Eq. (24) in order to find the
approximate potential well U1(x). The latter is shown as the blue
line in Fig. 4 and reproduces quiet well the numerical result U(x).

After finding the normalized eigenfunctions u+(x) and v−(x),
and χ from Eq. (48) for the given pair of the parameters h and γ
we construct the potential ~U(x) using the formula (50) and con-
vince that it does not differ in the eye from the potential U(x) pre-
sented in Fig. 4 by the black line.

The dependences U1(x) in Figs. 2 and 4 are results of the
one-mode approximation of solutions u(x) and v(x). Indeed,
the eigenfunctions of the operator L can be expanded by using the
orthonormal basis functions of the operator L0 as follows:

uþ(x) ¼ B0wþþB2w�þ
ð1

�1
Bkwk(x)dk, (53)

v�ðxÞ ¼ C0w� þ C2wþ þ
ð1

�1
CkwkðxÞdk: (54)

The terms B1w and C1w are absent in the expansions (51)
and (52), respectively, since we consider the even functions u(x) and
v(x). We have used so far only the first terms in these expansions.
The next step would be taking into account also terms B2w− and
C2w+. This two-mode approximation with using only two localized
eigenfunctions w+ and w− needs notice. It concerns the problem of
the asymptotic behavior of the functions. All is normal in the case of
the function v(x), whose slowly decaying asymptotics is the same as
that of the eigenfunction w−. However, it is not the case for the func-
tion u(x). This simply means that at large x the contribution of the
eigenfunction w− in the expansion (53) must be compensated by the
integral term, i.e., by the contribution of continuous spectrum states.
As an example of a similar situation, it is enough to present the
expansion of the normalized ground state eigenfunction f0 ¼

ffiffiffiffiffiffiffi
3/4

p
sech2 (x) of the Schrödinger operator with the potential −6sech2 (x)
by the use of the orthonormal basis of the operator with the poten-
tial −2sech2(x), having the ground state eigenfunction ψ0 ¼

ffiffiffiffiffiffiffi
1/2

p
sech (x) [cf. Eqs. (7) and (8)]:

f0 ¼
ffiffiffi
3

p

8
π � ψ0 þ f0 �

ffiffiffi
3

p

8
π � ψ0

� �
: (55)

The expression in brackets is the contribution of the continuous spec-
trum waves, and it is fully localized and compensates completely for
the contribution of the ground state function ψ0. Another situation,
when the eigenfunction is expanded only into a few localized states, is
rather rare. As an example, we mention the expansion of the function
ψ0 into only two even localized eigenfunctions of the Schrödinger oper-
ator with the potential −12sech2(x) We refer to these simple findings
because, unfortunately, the explicit form of the continuous spectrum

eigenfunctions of the operator (41) for the case of the three-soliton
solutions are not available yet, as to our knowledge, except asymptotics
and other scattering data.

Keeping in mind the above notice, we restrict ourselves by the
two-mode approximation with truncated Eqs. (53) and (54)
without the contribution of the continuous spectrum states. For
both pairs of the parameters h and γ the coefficients B0, B2, C0, and
C2 are calculated as usual by multiplying the Eqs. (53) and (54) by
the corresponding analytical eigenfunction and by numerical
finding the scalar products. For values h = 0.9 and γ = 0.565 we
find B0 = 0.99999 and B2 = 0.00022, and C0 = 0.99928 and
C2 =−0.00023. Thus, indeed the unitary operator S in Eq. (47) is
very close to the identity operator. The function u+(x) of Eq. (48),
obtained from u(x) (black line 1 in Fig. 1), is entirely reproduced
by the analytical expression Eq. (53) with the found coefficients.
Whereas the function v−(x) of Eq. (48) as the normalized curve
v(x) (red line 2 in Fig. 1) is indistinguishable to the eye from the
analytical expression of Eq. (54) with the found coefficients up to
regions with x ≅ ± 7. At a larger distance u(x) vanishes and asymp-
totics of v(x) tends to those of the single soliton ψ− (x) of Eq. (4).
The proximity of the ratios α1= B2/B0 and α2 = −C2/C0 is not acci-
dental. It is easy to see that the orthogonality of u(x) and v(x) in
the two-mode approximation leads to the exact equality α1 = α2. At
last, we adduce the corresponding results for the pair of parameters
h = 1.05 and γ = 0.6. The calculated coefficients, in this case, are as
following: B0 = 0.99995 and B2 = 0.00365, and C0 = 0.99318 and C2

= −0.00380. As a result, the function u+(x), obtained by the nor-
malization of u(x) (black line 1 in Fig. 3), is described very well by
analytical approximation, whereas the function v−(x) differs from
analytical expression by a few percents at the origin and less at its
maxima. Hence it occurs that the two-mode approximation is
closer to the numerical solution v(x), than the one-mode approxi-
mation of Eq. (50), at intermediate distances.

CONCLUSION

The main findings of this study are as follows:

(1) We have described quantitatively the static double-hump solu-
tion of the parametrically driven damped nonlinear
Schrödinger equation for the soliton bound state by the explicit
three-soliton formula of the integrable equations. This is the
unexpected and intriguing result that nonlinear system with
large enough dissipation can be described quite well by the
exact multisoliton formula of the integrable equations.

(2) As a consequence, the static soliton structure, which is usually
interpreted as two-soliton bound state, is constructed as the
“nonlinear superposition” of three solitons with three fixed
parameters, which depend on the strength of the parametric
pumping and the dissipation coefficient and determine all the
structure configuration. It suggests a new regard on the internal
structure of the double-hump solitons and proposes a new set
of internal degrees of freedom of the soliton complex in the
parametrically driven and damped systems. This makes it pos-
sible to formulate further a new variational ansatz for the
description the complex internal dynamics, including regular
and chaotic oscillation regimes of the constituting solitons.
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(3) The performed transformation of the governing system of equa-
tions to the Schrödinger-like equations reveals the close relation
between the structural parts of the double-hump soliton configu-
ration with different decaying laws and the eigenfunctions of the
Schrödinger operator with the symmetric potential well. This
allows us to consider the even eigenfunctions of effective spectral
problem as the principal soliton modes. It gives rise to a new
way of classification of static multisoliton complexes found
numerically before. It is clear that they are constructed from pair
of eigenfunctions of the Schrödinger-like operator, correspond-
ing to its ground and higher excited states.

(4) The explicit form of the unitary operator, which transforms the
orthonormal basis functions in the present study, is still an
open problem. There is the well-known example of the trans-
formation of the reflectionless potential well of the Schrödinger
operator in the direct scattering problem associated with the
Korteweg–de Vries equation, which does not change the eigen-
value set. However, in this case, the potential loses its symmet-
ric form under the transformation in contrast to what we
encounter in the present study.

The new tasks emerging from awareness of the above intrigu-
ing results will be subjects of forthcoming works.
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