Article (Périodiques scientifiques)
CalcGraph: taming the high costs of deep learning using models
LORENTZ, Joe; HARTMANN, Thomas; MOAWAD, Assaad et al.
2022In Software and Systems Modeling
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
accepted_version_CalcGraph: taming the high costs of deep learning using models.pdf
Postprint Auteur (758.77 kB)
Télécharger

This version of the article has been accepted for publication, after peer review but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s10270-022-01052-7


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Differentiable programming; Computational graph model; Edge AI
Résumé :
[en] Models based on differential programming, like deep neural networks, are well established in research and able to outperform manually coded counterparts in many applications. Today, there is a rising interest to introduce this flexible modeling to solve real-world problems. A major challenge when moving from research to application is the strict constraints on computational resources (memory and time). It is difficult to determine and contain the resource requirements of differential models, especially during the early training and hyperparameter exploration stages. In this article, we address this challenge by introducing CalcGraph, a model abstraction of differentiable programming layers. CalcGraph allows to model the computational resources that should be used and then CalcGraph’s model interpreter can automatically schedule the execution respecting the specifications made. We propose a novel way to efficiently switch models from storage to preallocated memory zones and vice versa to maximize the number of model executions given the available resources. We demonstrate the efficiency of our approach by showing that it consumes less resources than state-of-the-art frameworks like TensorFlow and PyTorch for single-model and multi-model execution.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
LORENTZ, Joe ;  DataThings S.A. ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
HARTMANN, Thomas ;  DataThings S.A.
MOAWAD, Assaad ;  DataThings S.A.
FOUQUET, François ;  DataThings S.A.
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
LE TRAON, Yves ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
CalcGraph: taming the high costs of deep learning using models
Date de publication/diffusion :
25 octobre 2022
Titre du périodique :
Software and Systems Modeling
ISSN :
1619-1366
eISSN :
1619-1374
Maison d'édition :
Springer, Allemagne
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Projet FnR :
FNR14297122 - Towards Edge-optimized Deep Learning For Explainable Quality Control, 2019 (01/01/2020-31/12/2023) - Joe Lorentz
Disponible sur ORBilu :
depuis le 24 novembre 2022

Statistiques


Nombre de vues
243 (dont 4 Unilu)
Nombre de téléchargements
129 (dont 2 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
OpenCitations
 
0
citations OpenAlex
 
0
citations WoS
 
0

Bibliographie


Publications similaires



Contacter ORBilu