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Abstract Models based on differential programming, like deep neural net-
works, are well established in research and able to outperform manually coded
counterparts in many applications. Today, there is a rising interest to introduce
this flexible modeling to solve real-world problems. A major challenge when
moving from research to application are the strict constraints on computa-
tional resources (memory and time). It is difficult to determine and contain
the resource requirements of differential models, especially during the early
training and hyperparameter exploration stages. In this article, we address
this challenge by introducing CALCGRAPH, a model abstraction of differen-
tiable programming layers. CALCGRAPH allows to model the computational
resources that should be used and then CALCGRAPH’s model interpreter can
automatically schedule the execution respecting the specifications made. We
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propose a novel way to efficiently switch models from storage to preallocated
memory zones and vice versa to maximize the number of model executions
given the available resources. We demonstrate the efficiency of our approach
by showing that it consumes less resources than state-of-the-art frameworks
like TensorFlow and PyTorch for single model and multi-model execution.

Keywords differentiable programming - computational graph model - edge
Al
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1 Introduction

Artificial intelligence (AI) and machine learning (ML) are currently receiv-
ing much attention. In the past few years, this technology has left the realm
of pure research behind. Advanced machine learning models, especially deep
neural networks, have been successfully applied to many practical domains,
e.g., machine translation [57], image recognition [28], self-driving cars [17],
the medical sector [37], and automation [40]. Therefore, more and more com-
panies understandably start to explore how AI and ML can be an asset to
their businesses. However, transitioning AI from research to real world appli-
cations, comes with some major challenges. ML models, especially deep neural
networks, can easily exceed the available computational resources, when they
are not implemented efficiently. It is pivotal that implementations use the
limited resources efficiently to enable as many executions of complex models
within a given time-frame as possible. The execution speed of ML models is
especially critical for applications that are supposed to take decisions in real-
time. Examples for this are self-driving cars [I7] or quality assurance systems
on fast moving production lines [56]. Both examples require classifying mul-
tiple frames per second. In addition to time, a second major resource is the
available memory. Memory-effecient ML implementations allow more complex
models to be used on the same device, potentially increasing the robustness of
Al-driven solutions. In addition, for many companies it can be crucial to allow
multiple users or applications on the same device while limiting the memory
consumption of individual entities. In such situations, it is necessary to predict
the memory requirements of the process before starting it and containing the
consumption throughout its execution. Time and memory constraints are es-
pecially relevant if cloud computing is not wanted or applicable and solutions
should be integrated on the edge [40]. This is often the case in the context
of Industry 4.0 and Internet of Things. Here, cloud solutions can be unsuit-
able due to security concerns, connection reliability or latency. Currently, edge
AT research focuses on fast efficient inference to enable Al for real-time ap-
plications. However, as the software and hardware components become more
efficient, practitioners might also want to train models on the same devices and
use the innate flexibility of ML models to adapt to changing situations [47].

In this article, we introduce CALCGRAPH, with the goal to reduce and
contain the high costs of ML models. CALCGRAPH is a model abstraction
of differentiable programming layers that underlie deep learning algorithms.
It has already been shown that model-driven engineering and machine learn-
ing can complement one another in many ways [1626,27]. We leverage mod-
els (CALCGRAPHS), similar to how some compilers use abstract syntax trees
(ASTSs), to drive and optimize the compilation process [65]. More specifically,
our contribution comprises the following three points:

1. Our model compiler generates optimized branchless byte code that can be
executed as a fixed sequence of operations. Most importantly, this allows
to compute the required main- and GPU memory size for a CALCGRAPH
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model and a given batch size—or an optimal batch size for a given memory
size—at compile time.

2. We minimize expensive memory allocations by preallocating the entire
needed memory (computed by the model compiler) and then reusing it
by switching models from storage to the preallocated memory and vice
versa. This avoids expensive malloc and free operations during runtime
and allows us to explore different ML models with constant memory. We
refer to this as model switching.

3. Knowing the memory requirements at compile time enables us to further
optimize the usage of the available resources by scheduling as many models
as possible for parallel execution and splitting the executions among the
available resources.

Determining the optimal ML solution for a given problem requires to ex-
plore many models. Hence, reducing the cost of model switches and executing
as many models as possible in parallel—on the given resources—is key to re-
duce the high costs of differential programming in terms of execution time and
memory consumption. CALCGRAPH allows to model the available resources
(memory, time) and then CALCGRAPH’s model interpreter can automatically
schedule the execution respecting this specification. Rather than focusing on
the exploration level, we focus with CALCGRAPH on providing an efficient
foundation on which model exploration can be built on top. We validate the
efficiency of our approach by showing that it can outperform model exploration
built on top of state-of-the-art frameworks, like TensorFlow and PyTorch, in
terms of execution time as well as memory consumption while reaching the
same accuracy.

The remainder of this paper is as follows. In Section [2| we first present
the background for this article: differentiable programming, foundations of
deep learning and the challenges towards real world application. Then, in
Section 3] we present our proposed CALCGRAPH model in detail, the challenges
of applying deep learning to real world problems and how we approach them
with CALCGRAPH. In Section [ we evaluate our approach, discuss future work
in Section [} related work in Section [6} and conclude in Section

2 Background

In this section, we first introduce differentiable programming, as our proposed
CALCGRAPH is an abstraction over differentiable programming layers. We then
explain how deep learning and differentiable programming are related. Lastly,
we introduce the challenges of deep learning for real-world applications and
describe how CALCGRAPH can be used to tackle them.

2.1 Differentiable programming

The term differentiable programming (also referred to as DiffProg or OP)
has lately been popularized by Yann LeCun, who describes it as "a mod-
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ern rebranding of deep learning, similar to how deep learning was a modern
rebranding of neural networks with more than two layers” [I]. As we will ex-
plain in the next section, differentiable programming is a programming model
in which arbitrary programs can be differentiated, usually via automatic dif-
ferentiation [33l[62]. Differentiation allows to systematically optimize the pa-
rameters of a program, i.e., to find the “good” values of the parameters, using
gradient-based optimization (often gradient descent). In other words, differen-
tiable programming allows to use deep neural networks as building blocks in
and for our programs. Andrej Karpathy introduced the term Software 2.0 [1]
to indicate a shift in the way software can be written using deep neural net-
works. Interestingly, this idea is close to ideas of model-driven engineering,
where a code generator can automatically generate the code for a problem
specified by a model — just in the case of Karpathy’s vision of Software 2.0
the generator is automatically derived (or learned) via optimization instead of
manually programmed. In this direction, in a previous work [25], we discussed
how machine learning can be seamlessly integrated into modeling languages.
Although differentiable programming is more generic and has found use in a
wide variety of areas, particularly scientific computing, it is nowadays promi-
nently used in machine learning, or more specifically deep learning. This is
also the area where we focus our work on.

2.1.1 Automatic differentiation

Automatic differentiation (AD) refers to a set of techniques to compute deriva-
tives of functions by applying the chain rule in recursion to accumulate the final
values from intermediate evaluations [9]. The simpler intermediate steps and
the accumulation of AD are implemented in code, therefore it is also referred to
as algorithmic differentiation or computational differentiation [43]. Computing
derivatives in machine learning with AD has some major advantages over the
alternative numerical and symbolic differentiation. The approximations used
in numerical differentiation are easy to implement but introduce approxima-
tion errors and have a computational complexity of O(n) with n the number of
gradient dimensions [9]. Symbolic differentiation is exact, however, expressions
can grow exponentially, which makes it difficult to implement the approach
efficiently. AD heavily uses recursion and stores intermediate results in mem-
ory to evaluate function derivatives to working precision while only executing
the underlying function code a constant number of times. There are two main
approaches of automatic differentiation: forward-mode AD and reverse-mode
AD. We will use a simple example to illustrate both modes. Let us consider
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the function f(z1,22) and define:

f(@1,22) = 3129 + exp(z1) — cos(z2)
Woo = L1
Wwo1 = T2
W1 = WooWo1
wa = exp(woo)
ws = —cos(wo1)
wWq = W1 + wa

W5 = Wyq + W3

For both modes the computations of f(x1,z2) at a the evaluation point needs
to be performed to get the respective values of the w;. Forward AD starts
with partial derivatives at inputs and ends by computing partial derivatives
at outputs. In our example, forward AD requires two executions to compute
the derivatives with respect to the two independent variables. The derivative
with respect to z1 (wpo) is computed with the following operations:

G0 = 1(init)
wo1 = 0(init)
W1 = wWoowo1 + WooWo1 = Wo1
wa = wopexp(woo) = exp(woo) (2)
w3 = worsin(wer) =0
Wy = w1 + w2 = wo1 + exp(woo)
Ws = Wy + w3 = wo1 + exp(woo) + 0

Reverse AD operates in the opposite direction, starting with partial derivatives

at the output and backpropagating via so-called adjoints w; = gi?. Using the

same example as before, the computation would be performed as ‘follows:

@5 = 1(init)

g =ws*x1=1

w3 =ws*x1=1

w1 =wgx1=1

o =y *x1=1

Wop = Wiwo1 = wo1 (3)
(2180 = woexp(wpp) = exp(woop)

@oo = Wy + @By = wo1 + exp(woo)

Wh1 = W1Woo = Woo

(1181 = wzsin(wor) = sin(wo)

_ —a b .
W1 = Wop + Wp1 = Woo + sm(w01)
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Reverse AD computes the partial derivatives with respect to an arbitrary num-
ber of inputs at one go. In general reverse AD is faster than forward AD when
the number of inputs is large in comparison to the number of outputs [43].
This makes reverse mode advantageous for machine learning where the gra-
dient with respect to thousands or even millions of parameters need to be
computed. In fact, reverse-mode AD is a more general form of the
backpropagation algorithm used in multilayer perceptrons, i.e., in deep
learning using modern neural networks [9]

2.1.2 Approaches to automatic differentiation

There are different approaches when it comes to implement automatic differ-
entiation. One is to use domain-specific languages (DSLs). Automatic differ-
entiation can be implemented as an external or internal DSL. External DSLs
are their own languages with their own syntax and semantics, whereas internal
DSLs are embedded into a host language and can for example be imported
via a library. While embedded DSLs have without doubt their advantages,
they come also with limitations: they are often restricted to specific types
and APIs, usually involve some boilerplate to map to their host language,
are restricted to the meta-programming capabilities of their host language,
and may not provide good diagnostic support. Another approach is the use
of source code transformation tools, i.e., code generators [25]. This means the
tool analyzes the input code and generates the output code that computes the
derivatives. Such tools are essentially static compilers. This allows to perform
static analyses on the input code and to generate optimized output code. For
example, it can be determined if some variables do not need a derivate or if
some intermediate variables can be removed. A disadvantage is that such tools
are often not well integrated into the programming environment and therefore
creating an extra step in the workflow. First-class language support is another
approach to differentiable programming. The idea is to combine the advan-
tages of source code transformation tools and a seamless integration into host
languages. Currently most programming languages that support differentiable
programming are research systems, e.g., [31l46], but a proposal to back dif-
ferentiable programming into a mainstream programming language, namely
Swift, is currently under work [63].

With CALCGRAPH, we essentially follow the source code transformation
approach. CALCGRAPH models are compiled into optimized byte code, which
is then executed via an interpreter. However, to mitigate the mentioned dis-
advantages of source code transformation approaches, we develop our own
external DSL for CALCGRAPH. In addition to our own language, we also sup-
port ONNX models. Since our language is not of further importance in the
context of this article, we consider it out of scope.
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input output
> learn (inpyts, outputs) <
updates internal state
input output
> uses |_ntemal state >
predict (inputs)

Fig. 1: A neural network as a black box

2.2 Deep learning

Over the past few years machine learning has been incredibly successful, es-
pecially deep neural networks. A deep neural network is an artificial neural
network with multiple layers between input and output [10]. Accordingly, the
term deep learning is used when deep neural networks are involved in the learn-
ing algorithms. In this section, we present an overview of a neural network and
show how differentiable programming and deep learning are linked.

2.2.1 Overview of a neural network

At a high-level, a supervised neural network can be presented as a black box
with two methods, learn and predict as shown in Figure[l}] The learn function
uses the inputs and outputs to update the internal state of the neural network
and create an internal knowledge. The predict function is used to infer the
outputs from the given inputs.

The first step in learning is to start from somewhere, the initial hypothesis.
Like in genetic algorithms and evolution theory, neural networks can start
from anywhere. Thus, a random initialization of the weights (internal state)
is a common practice. The rational behind is that from wherever we start,
through an iterative learning process, we can reach the pseudo-ideal model.

The next step, after initializing the model randomly, is to check its perfor-
mance. We start from the inputs we have, pass them through the network and
calculate the actual output of the model in a straightforward manner. This
step is called forward-propagation, because the calculation flow is going in the
natural forward direction from the inputs, through the neural network, to the
outputs. To be able to generalize our model, we define what is called a loss
function. A loss function is a performance metric on how well the neural net-
work is able to reach its goal of generating outputs as close as possible to the
desired values. Simply speaking, the machine learning goal is to minimize the
loss function (to reach as close as possible to 0). Now, we can transform our
machine learning problem to an optimization problem that aims to minimize
this loss function.

We could use any optimization method that modifies the internal weights
of neural networks in order to minimize the total loss function, e.g., genetic
algorithms, greedy search, or even a simple brute-force search. While this might
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work if the model is simple and has only very few parameters, however, if we
are training the neural network over many inputs (like in image processing),
we reach quickly models with millions of weights to optimize. This is where
differentiation comes into the game.

2.2.2 Backpropagation and automatic differentiation

Differentiation deals with the derivative of the loss function. In mathematics,
the derivative of a function at a certain point, gives the rate or the speed
of which this function is changing its values at this point. As explained in
Section [2.1.1] derivatives are decomposable, thus can be back-propagated. Au-
tomatic differentiation technique requires only that each function is provided
with the implementation of its derivative.

Since we have the starting point of errors, which is the loss function, and
since we know how to calculate the derivative of each function from the com-
position, we can propagate back the error from the end to the start. If we
create a library of differentiable functions or layers where for each function
we know how to forward-propagate (by directly applying the function) and
how to back-propagate (by calculating the derivative of the function), we can
compose arbitrary complex neural networks. Then, we only need to keep track
of the function calls during the forward pass and their parameters in order to
know the way back to back-propagate the errors using the derivatives of these
functions. As we will see later (Section , this is what we provide with our
proposed CALCGRAPH. We implement for each operator that can be modeled
in the CALCGRAPH a forward and backward mode.

Using the gradients, the learning process at any layer looks as follows:

— Check the gradient of an element.

— If it is positive, meaning the error increases if we increase the weights, then
we should decrease the weight.

— If it is negative, meaning the error decreases if we increase the weights,
then we should increase the weight.

— If it is 0, we do nothing, the error is at its minimum. We are at our stable
point.

This process is depicted in Figure 2]

Since in real-world problems there are usually a lot of non-linear functions
involved, any big change in weights will lead to a chaotic behavior. It is impor-
tant to keep in mind that the gradient is only local at the point where we are
calculating it. Therefore, weights should be only updated in very small steps.
Several weight update methods exist, these methods are often called optimiz-
ers. The loss function could be optimized over the whole dataset, this is called
batch learning. Another option is to update the weights every n elements of the
training data, expecting that the dataset is shuffled randomly. This is called
mini-batch gradient descend. And if n = 1, we call it full online-learning or
stochastic gradient descent, since we are updating the weights after each sin-
gle input/output observed. Any optimizer can work with these 3 modes (full
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Do
nothing
here

w

Fig. 2: Arrows represent the gradients at the corresponding points

online/mini-batch/full-batch). Since we update the weights with a small delta
step at a time, it will take several iterations in order to learn.

2.3 Challenges of deep leaning in real world applications

Despite the proven effectiveness of Deep Learning in research, moving to real
world applications has some major challenges.

2.8.1 Computational resource constraints

Since their introduction, neural networks have become both deeper and wider
to improve accuracy [2959]. Today it is common in research to use models
with several hundreds of layers and millions of parameters. The downside
of this evolution are ever rising computational requirements. Huge models
like this require equally big amounts of memory to store all the parameters,
even more so in case of training where gradients also need to be stored and
accumulated during backpropagation. The computational complexity, i.e. the
execution time, is also rising, despite efforts to optimize the efficiency on the
architectural level [29[51].

In research labs, this challenge is usually solved by using high-end GPUs
or even a multitude of them. This solution is not feasible for many real world
applications due to cost or power consumption. This is particularly impor-
tant if cloud computing is unfeasible or unwanted and the hardware solutions
need to be replicated for many edge-instances [40]. For Deep Learning to be
successful in real world, a hardware-software combination needs to be defined
that can be reproduced in a cost-effecient way. This need has recently been
acknowledged by hardware manufacturers, which lead to the introduction of
GPUs on small factor computing units like Nvidia’s Jetson family [58]. On the
software side, a proper management of the available resources is required. It
is pivotal that implementations use the limited resources efficiently to enable
as many executions of complex models within a given time-frame as possible.
The execution speed of ML models is especially critical for applications that
are supposed to take decisions in real-time. An example for this are quality
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assurance systems on fast moving production lines, which require to classify
multiple frames per second [56]. Memory-effecient ML implementations allow
more complex models to be used on the same device, potentially increasing
the robustness of Al-driven solutions. In addition, for bigger companies it can
be crucial to allow multiple users or applications on the same device while lim-
iting the memory consumption of individual entities. In such situations, it is
necessary to predict the memory requirements of the process before starting it
and containing the consumption throughout its execution. Our CALCGRAPH
allows for this by pre-compiling models and allowing users to set strict limits
on the allocated memory.

Improving the efficiency of software and hardware components for appli-
cations on the edge might even allow for advanced use cases. While today,
edge-Al is mostly used for efficient inference, advanced applications could also
aim for continuous training cycles directly on the integrated production setup.
Aside from forward and backward on neural networks, there might also be
additional computations that need to be handled. For example, the input data
might not be directly available in a format that is suitable for the differ-
ential models. In such cases, some additional code execution to pre-process
the data might be needed. Post-processing steps on the model outputs are
also commonly needed. Among them, a challenging and ML-specific task is to
provide reasoning for the model decisions. Lacking explainability of deep neu-
ral networks is direct consequence of the flexibility and autonomous feature
learning they provide [49]. Neural networks tend to rely heavily on features
which are un-intuitive for human perception [52]. This is a major issue for
a number of real world applications where decisions need be to traceable or
human-machine-interaction is wanted. Consider for example Al-driven judging
for tribunal decisions. Here it is not good enough to declare a culprit guilty,
instead humans need to be able to understand why this decision was taken.
Recently, a number of approaches have been proposed, to provide reasoning for
neural network decisions [62/5354L[68]. These solutions introduce additional
computations that may need to be executed on the same devices, at the same
time, as the main decision taking. Many approaches in this area even rely more
or less on the backpropagation algorithm that is also used for training models.
CALCGRAPH allows the user to define not only differential programming layers
but also additional pre- and post-processing steps, that need to be performed.
Every operation defined for a CALCGRAPH is considered as parts of the model
that will be compiled, which allows to tailor the whole solution process to the
underlying hardware resources.

2.4 Model exploration

Neural networks are powerful, generic, and versatile tools to learn relationships
between inputs and outputs. However, this versatility and generic problem-
solving capability comes at a high price: there are lots of possible configura-
tions to build a neural network. While in theory it should be possible to use
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machine learning models like black boxes, i.e., without having to know the
internals, in practice machine learning is still hard to use with its thousands
knobs and parameters and most of the time default settings do not work. In-
stead, data scientists need to evaluate different models and tune the numerous
parameters based on their assumptions and experience against concrete prob-
lems and training data sets. In the following, we present the main categories of
model exploration and the approaches that have been proposed in literature
to automate this process as much as possible.

Feature engineering is the process of extracting features from raw datasets.
It is an important step in machine learning. Bishop defines a feature as “an
individual measurable property or characteristic of a phenomenon being ob-
served” [12]. It can make the difference between a good model and a bad
model. Manual feature engineering is a difficult and time consuming task. It
requires domain knowledge, data science expertise, and usually a lengthy pro-
cess of trial and error. “Automated feature engineering” or “feature learning”,
therefore aims at automatically discovering the needed features to build better
predictive models faster. Straightforward approaches consists of simply “try-
ing” different features, either exhaustively, randomly, or driven by some form
of greedy algorithms, and then compare the results.

Hyperparameters are the parameters used to control the learning process
itself. Accordingly, “hyperparameter optimization”, sometimes also called “tun-
ing”, is the problem of choosing a set of (preferably optimal) hyperparameters
for a specific learning algorithm. Besides a manual search, the traditional way
of hyperparameter optimization is simply an exhaustive search of a manually
specified subset of the hyperparameter space of a learning algorithm. This is
called “grid search”. To address the obvious performance drawbacks of this
approach, different alternatives exist. “Random Search” replaces the exhaus-
tive enumeration of all combinations by selecting them randomly. In case of
neural networks, this is often more efficient than grid search [11]. Random
search can be further improved with adaptive resource allocation and early-
stopping, like predefined iterations, data samples, or features and allocate this
to randomly sampled configurations [4I]. Another option is to use a greedy
approach. Other approaches are based on “Bayesian optimization” in order
to build a probabilistic model of the function mapping from hyperparameter
values to the objective evaluated on a validation set. Bayesian optimization
aims to balance exploration and exploitation [351[55].

“Neural architecture search (NAS)” is a recent development that aims to
remedy the difficulties of manually designing neural network architectures [70]
by automating this process. Most NAS implementations work as depicted in
Figure [3] They start by a definition of possible “building blocks” that can be
used to create the candidate neural network. For example, the state-of-the-art
NASNet paper [70] suggests for an image recognition neural network blocks like
identity, 1z3 then 3x1 convolution, 1z7 then 7xrl convolution, etc. A controller
(often a neural network itself, e.g. a recurrent neural network) then generates
based on these building blocks a candidate neural network. This network ar-
chitecture is then trained and evaluated on a held-out dataset, which is usually



CalcGraph: Taming the high costs of deep learning using models 13
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Fig. 3: Neural Architecture Search
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divided into a train, a test, and a cross-validation part. The results are used to
update the controller and new candidate neural networks are generated. The
goal is to generate over time better and better networks. Depending on the
requirements and optimization goals (predictive performance, memory con-
sumption, model size, inference time, etc.), various different approaches have
been suggested in recent years with a focus on evolutionary approaches [20,
42] and reinforcement-based approaches [69].

The goal of ensemble learning is to learn a set of individual models and
later use them in tandem [24]. The underlying principle used is that, on av-
erage, the joint decisions of a group of models are more accurate than that
of the individual models. The key to employ succesfull ensembles is to train
a set of diverse and complementary models [64]. The individual models of an
ensemble can for example be trained by alternating hyperparameters [64] or
using cyclical learning-rate schedules [32].

The model exploration schemes that are detailed above can be performed
manually or implemented in a (partially) automated fashion. No matter how
the exploration is performed, our CALCGRAPH solution provides a crucial
utility to support the search process. In a process that we coin as model
switching, we can move between various pre-compiled models efficiently while
assuring that the constraints on computational resource consumption are ad-
hered throughput the exploration.

3 The CalcGraph model

In this section, we detail our proposed CALCGRAPH, which has been specifi-
cally designed to provide control over the computational resource consumption
of differential programming. Figure[d gives an overview of CALCGRAPH’s tech-
nology stack. The main elements discussed in this article are depicted in light
grey. The CALCGRAPH consists of a meta-model, model compiler, model in-
terpreter, and heap (referred to hereinafter as CalcHeap). The model compiler
takes a model as input, precomputes the heap partitioning, derives an optimal
batch size, and generates byte code for the model interpreter. The model in-
terpreter executes the generated byte code. As mentioned in Section [2.1.2] we
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Fig. 4: Overview of the CALCGRAPH stack

provide our own modeling language, however, since this language is not impor-
tant in the context of this article, we consider it as out of scope. Additionally,
we aim at supporting ONNXE| models. ONNX is a de-facto standard open for-
mat to represent differential programming models. Supporting the operators
and building blocks, defined be ONNX, will make it easier for new and expe-
riences developers to get started with CALCGRAPH. While we focus on neural
networks and deep learning, it is important to mention that a CALCGRAPH,
as an abstraction of differential programming layers, can also be used in the
context of general optimization problems and scientific computing (see also
Section .

Details of the CALCGRAPH wil be given in the follwing Sections, starting
with the meta-model in Section followed by the compiler in Section [3.2
and the interpreter in Section Afterwards we will summarize the main
features of CALCGRAPH in Section [3.4 and provide an example in Section 3.5

3.1 The CALCGRAPH meta-model

Figure [5] shows the CALCGRAPH meta-model. The main elements are again
depicted in light grey. It is important to notice that a CALCGRAPH is essen-
tially a lightweight descriptor of a complex computation (learning). This is
similar to the computational graph of TensorFlow [6].

Each CalcGraph defines an execution mode, which specifies where the
graph should run on. This indicates the resources and libraries which are later
needed for the execution. Possible execution modes are: CPU(s), GPU(s), or
BLAS libraries. Each CALCGRAPH contains one or many paths.

A Path defines a computational sequence of operators. Each operator
has a number of input and output variables that are used during execu-
tion. Paths specify a calculation mode. Possible values for the calculation
mode are ForwardOnly (no backpropagation, i.e., no learning involved) and
BackwardEnabled (forward and backpropagation, i.e., learning involved). For
instance, we can create a “pre-processing path” to specify what operators need
to be executed on an image before we execute another path for the neural net-
work. The pre-processing path would be in ForwardOnly mode, since it is a
sequence of operators with no weights to learn. Then, we could define a “neural

1 https://onnx.ai/
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Fig. 5: CALCGRAPH meta-model

network path” (configured in BackwardEnabled mode) with several operators
and weights to learn. Last but not least, we could define a “post-processing
path” (ForwardOnly mode) that converts the output of the neural network
to an appropriate format for an application. In the same fashion, we could
implement recent XAI methods which investigate the feature maps produced
during forward computation [52l[63l54] or the gradients computed via back-
propagation [52[68], either as stand-alone paths or by adding the necessary
operations to the “neural network path” Another example of using multiple
paths is a Generative Adversarial Network (GAN): we could configure one path
to represent the generative network and another path to represent the discrim-
inative network. In other words, a CALCGRAPH is a composition or sequence
of paths, which define a control flow. In Section we present an example
of how to define a CALCGRAPH and declare a control flow using paths. That
each path, and with this each operator, has a forward and backward mode
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(i.e., can be learned) makes the connection to differentiable programming (see
Section. This allows to model differentiable programming layers and there-
fore deep neural networks in CALCGRAPH We separate the functions forward,
applyLoss, backward, and optimize instead of having one function combining
all of these. This gives us full flexibility on the batch size and the way we pro-
cess batches. While bigger batch sizes are more likely to converge, they require
lots of rounds to converge. On the other side, very small batch sizes have a
risk to not converge but need less rounds until they converge. Finding an ideal
(mini) batch size is therefore a trade-off and can be considered as a hyper-
parameter. Furthermore, while certain learning problems and datasets might
suggest a certain batch size (for some optimizers the learning rate gets harder
with increasing rounds), there can be technical limitations why this batch size
is not feasible, e.g., available GPU memory or I/O block size. This means, we
have to distinguish between the batch size coming from the learning problem
and the technical batch size limitations. By splitting the forward, backward,
and optimize methods and having an additional method endRound (to indi-
cate the end of a training round), we are able to respect the learning batch
size despite technical limitations by splitting the batch size in two concepts.

Operators represent atomic operations that can be executed on variables.
Examples are Add, Sub, and MatMul. Most operators require one or several
inputs and have one output. Others need additional parameters. Operators
can be grouped into classes of similar characteristics. One class is the group of
unary operators that take one tensor as input and produce one tensor of the
same size and dimension as output. An example for an unary operator is Y =
sin(X). Another class of operators takes two inputs and produces one output,
all of the same size and dimension, like C = add(A, B). Then, we have a more
advanced class of operators, which needs additional parameters and have more
complex dimension relationships between their inputs and outputs. Examples
for this class are MatMul, convolution, and de-convolution. We define a set of
meta categories (MetaCategory) where most operators belong to. These do
not need special checkers or implementations regarding size, type, and memory
requirements. They are usual linear in terms of memory consumption. Other
operators need to provide their own checkers of size, type, and memory needed
for the output. The list of all operators can be seen as an instruction set,
which defines the possible operations that can be performed on variables with
a CALCGRAPH. This is somehow similar to the x86 instruction set, which
defines which operations can be executed on a compatible microprocessor. A
de-facto standardized set of operators has been defined by ONNX [3] and
we aim at implementing a superset of these operators to be compatible with
ONNX models. However, to date we only cover around 1/3 of the most used
operators.

Operators have an optional Workspace. This is necessary because some
operators need additional memory. The required memory is different per target
device (CPU/BLAS/GPU). This is a main reason why a change of the target
device makes it necessary to recompile the model. For CPU only we do not need
a workspace, but for BLAS and GPU it is required. All operators in the whole
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CALCGRAPH model share the same workspace. The size of the workspace is
based on the operator with the biggest memory requirement. The workspace
is a special zone in the heap.

Variables are the central elements of a CALCGRAPH. Each variable repre-
sents a tensor. There are three types of variables: 1) placeholders which hold
data from outside of the CALCGRAPH, 2) variables to be optimized, meaning
they have to be updated after a learning operation, and 3) generic variables,
which are usually just the results of operators. For example, the following
equation O = W x I shows these three types of variables. I represents a tensor
input or a placeholder provided from a dataset outside the CALCGRAPH. W
can be marked as to be optimized, it represents the weights to learn, thus
has to be initialized in some way, then updated regularly after each learn-
ing round. O is just calculated straightforwardly from the execution of the
operator multiply on W and I. Placeholders have getters and setters while
variables and variables to optimize have only getters (for the value and for the
gradient). Variables that are marked as to be optimized require two additional
parameters: one to define how to initialize them (InitializationMethod, e.g.,
everything to zero, random, etc.) and one to define what regularization method
(RegularizationMethod, e.g., L1, L2, etc.) has to be applied on them dur-
ing the optimization phase. Every variable has two TensorDescriptors. One
specifies the generic shape of the tensor and can contain a variable size dimen-
sion. The other one represents the current shape of the variable as configured
to run with the current batch size. All variables allocate a forward weight in
a so-called CalcHeapZone. If the path is configured for backpropagation, all
variables in that path have in addition to the forward weight also a gradient
weight. The variables marked as to be optimized have an extra place for the
optimizer.

The CalcHeap is an abstraction responsible for allocating memory for the
execution of the CALCGRAPH. It is subdivided into four memory zones: the for-
ward zone, the gradient zone, the optimizer zone, and the workspace zone. Each
variable in the CALCGRAPH points to its space, the CalcHeapZoneSpace,
within one or several of the zones. Variables participating in any path marked
for backpropagation will have memory allocated in both forward and gradient
zones. Variables marked to be optimized will have in addition space in the
optimizer zone. The remaining variables participating in forward only paths
will only have memory allocated in the forward zone. Each of the zones is a
continuous memory block. As we will see in the following sections, this division
of zones is a key characteristic of our CALCGRAPH approach.

3.2 The CALCGRAPH model compiler

The compiler takes a CALCGRAPH model as input. In the model, either the
maximum allowed memory size (main and GPU) must be specified, or the
maximum allowed batch size, depending on what the compiler should optimize.
In case the (optimal) maximum batch size is known, e.g., due to the dataset
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or the given learning problem at hand, the compiler can automatically derive
the required memory size for this batch size and for the target device. The
other way around, the maximum allowed memory size can be specified and
the compiler can automatically derive the maximum possible batch size given
the memory restrictions. The compiler then generates the byte code of the
model and derives the heap memory partitions, to maximize the usage of the
allocated heap space, as output. This information is directly stored in the byte
code of the model. The guarantee on memory consumption that our compiler
provides is a key enabler for applications with strict resource constraints. The
compilation process is depicted in Figure [6]

While computing the required memory size from a given maximum batch
size is straightforward—with the help of the tensor descriptors, we know the
exact size of each variable (see Section —computing the maximum batch
size based on a given maximum memory size is more difficult. This is because
some operators are not linear in their memory allocation. Another reason is
that the same operator can have different implementations according to the
target device or according to the input tensor size (due to optimizations).

We decided to use a dichotomic search algorithm. The base idea is first to
start with a batch size of one and compute based on it the memory needed. If
the memory needed for a batch size of one is already more than the maximum
allowed memory, the search stops with an error message. In a future work
we plan to investigate how a single CALCGRAPH descriptor could be split
or how we could apply methods like gradient-checkpointing [I8] to overcome
this limitation. However, CALCGRAPH models are just small descriptors so
that even in case of very limited hardware resources this is only a rather
small limitation. If the batch size of one passes the maximum allowed memory
test, the next step is to consider if the operators will scale in memory in a
linear way. So we compute what the batch size would be if we divide the
maximum allowed memory by the memory required for a batch size of one.
Next, we increase or decrease the batch size step by step. When we overshoot
the maximum allowed memory size we decrease the batch size, if we can still fit
more in the maximum allowed memory, we increase the batch size accordingly.
We continue this process till we reach an ideal batch size, where even a +1
on it would overflow the maximum allowed memory. Algorithm [1] shows the
pseudo code for this algorithm. We omitted the description of the method
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requiredMem, as it is a straightforward computation of the size for a given
batch size (a simple iteration over the operators and variables).

Algorithm 1 Dichotomic search

1: procedure getMaxBatchSize(maxMem)
2: startSearch < 1

3: startSearchSize < requiredMem(startSearch)

4: if startSearchSize > maxMem then

5: throwException(” Insuf ficientmemory™)

6: end if

7 > we assume a linear memory requirement first

8: endSearch <— maxMem/startSearchSize

9: endSearchSize < requiredMem(endSearch)

10: > double the upper bound as long as it is less than maxMem

11: while endSearchSize <= maxMem do

12: endSearch = endSearch * 2

13: endSearchSize = requiredMem(endSearch)

14: end while

15: > startSearch < maxMem;endSearch > maxMem

16: do

17: x + (startSearch + endSearch)/2

18: xSize < requiredMem(x)

19: if 2Size < maxMem then
20: startSearch < x > update lower bound
21: else
22: endSearch < x > update upper bound
23: end if
24: while (endSearch — startSearch) > 1 > reduce search interval while boundary > 1
25: return startSearch > max batch size is stored in startSearch

26: end procedure

The use of CALCGRAPH models as abstractions allows us to optimize the
generated byte code and hence, reduce the computational resource consump-
tion. First, the generated byte code consists of a simple sequence of operations
without branches, i.e., the byte code is branchless. Although modern pro-
cessors are equipped with sophisticated branch prediction algorithms, each
wrong prediction hits the performance quite substantially. Branching to an
unexpected location makes it necessary to flush the pipelines, pre-fetch new
instructions, etc. To avoid such dreadful stalls, our generated byte code is
branchless. This optimization is possible by analyzing the model abstraction,
or more precisely, the paths and operators of a CALCGRAPH model before
generating the byte code. Each operator of the model abstraction is mapped
to a specific byte code that can afterwards be directly accessed via goTo calls
instead of a sequence of branch decisions. This scheme is used and proven
to be efficient with other compiled programming languages like Lua [4]. An-
other optimization that we perform is to merge several operators or to split
an operator into several others in case it is beneficial for a target device. For
instance, CUDA libraries provide an optimized implementation for linear, re-
current, and convolutional layers. In these cases, there is no need to run first
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a Multiply and then an AddBias operator, since we can fuse these two oper-
ators into one LinearLayer operator. In addition to that, the model compiler
can optimize for the data transfer necessary between CPU and GPU, by care-
fully splitting the model into chunks of independent operations to enable data
transfer in parallel with model execution on GPU. This is possible thanks to
the asynchronous transfer and execution API of many GPU providers.

Besides the sequence of operations, the model compiler also generates the
partitioning of the heap. The heap gets partitioned into four distinct zones:
the forward zome, the gradient zone, the optimizer zone, and the workspace
zone. As mentioned previously, for paths in forward only mode variables only
need space in the forward zone, while for paths in backpropagation mode
variables need space in the forward zone and in the gradient zone. Variables
to optimize need additional space in the optimizer zone. The workspace zone
is a common workspace for the whole model and is used in case some operators
need to allocate additional memory for some target devices, i.e., BLAS and
GPU. It is important to notice that all of these zones are continuous. Each
variable of a CALCGRAPH model points to a distinct position inside of the
zones. This is implemented using offsets, i.e., for each variable and for each
zone the variable needs space in, the byte code of the CALCGRAPH model
contains an offset specifying the position inside a zone. This offset mechanism
allows to omit bound checks during runtime and therefore to further increase
performance.

When the model compiler is calculating the offsets of variables in each
zone, it always considers the biggest batch size possible within the maximum
memory bounds. Later, during the execution time, it is always possible to use
a batch size smaller than the maximum allowed one. This will only have the
effect of a sparse memory usage, but it is still much cheaper than to free, re-
compute, recompile, and re-allocate the memory. The following example shows
when changing the batch size would be necessary: Let us consider we have a
dataset of 1065 entries, and within the memory constraint, we can only fit a
maximum batch size of 100. Then, we can proceed by splitting the dataset
into 10 mini batches of 100 each and the last one of 65. There is no need to
reallocate the memory for the last mini batch. A sparse usage is absolutely
fine for such cases.

As mentioned earlier, the model compilation is different for each target de-
vice. This allows special memory and operator optimizations per target device.
The instruction set and the logic of operators are different on CPU and GPU.
While CPUs are optimized for sequential operators, GPUs are best suited
to parallelize the implementation of the operators, thus might have different
memory requirements. This is why the workspace zone is needed.

3.3 The CALCGRAPH model interpreter

The model interpreter is a virtual machine. It reads the byte code generated
from the model compiler and executes it. As explained in the previous sec-
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tion, the byte code is a sequence of executions. During execution, the model
interpreter takes advantage of the memory segmentation that has been pre-
computed by the model compiler. This allows the model interpreter to stati-
cally allocate the whole required memory for the execution of the CALCGRAPH
model in advance. This avoids expensive memory allocation operations (mal-
loc) during the execution of CALCGRAPH models and significantly improves
the performance. Moreover, it allows to execute CALCGRAPHs with constant
memory usage, no additional memory needs to be allocated nor freed. There-
fore, unlike in many other approaches, it can never happen that training a
model ends in an out of memory error after hours or days of computation.
The working process of the interpreter is depicted in Figure

The execution granularity is per operator. In future work we plan to inves-
tigate what advantages and disadvantages another granularity, e.g., per path
would have. At the beginning of the execution the pre-allocated memory gets
initialized. Initializing just means the memory is set to 0, ¢.e., it is just a sin-
gle memset operation. During execution the place of each variable inside this
memory block is defined by the offset that has been precomputed by the model
compiler and stored inside the byte code. The fact that each variable has a
precomputed static place inside the memory allows to completely omit bound
checks during runtime, which again increases the performance. In addition to
the four zones (forward, gradient, optimizer, and workspace), the main mem-
ory also holds a program counter. Besides the fact that paths can be executed
in forward and in backward mode, and that therefore the program counter
cannot be just increased but must also be decreased, our program counter is a
standard program counter. The way we divide the main memory and generate
the byte code from the model makes it unnecessary to use an additional stack
during execution.

The common way to train models is to allocate and free memory dynam-
ically during learning, and this per model. This is not only extremely costly
but the required main memory for training is not known in advance, possibly
leading to out of memory errors after hours or days of computation. It makes it
also more difficult to optimally utilize the available resources. One of the core
concepts behind our CALCGRAPH model is that multiple models can share
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the same pre-allocated memory and just repartition it, instead of expensively
freeing and reallocating memory. As a reminder, repartitioning the CalcHeap
means just initializing it to 0. In reference to the concept of context switching,
we refer to our approach of switching models into the pre-allocated memory
as model switching. Just like a context switch is a procedure to change from
one task (or process) to another while ensuring that the tasks do not conflict,
a model switch is a procedure to change from one model to another while en-
suring that the models do not conflict. And just as effective context switching
is performance critical to provide user-friendly multitasking, effective model
switching is performance critical when it comes to executing many CALC-
GRAPH models, as it is the case for hyperparameter or neural architecture
search. A model switch consists of the following basic operations:

— stop the execution of the current model

— swap the heap of the current model to storage

— re-initialize the heap, to avoid leaks from prior executions

— copy the swapped heap of the new model from storage to memory
— continue the execution of the new model

These steps are depicted in Figure [§] Since each zone is a continuous block,
swapping the heap from storage to main memory and vice versa is very cheap
because we only need a single memory copy (memcpy) operation per zone.
Furthermore, it is not always necessary to swap all zones. As soon as the
variables to optimize are optimized, there is no need to keep the gradient
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zone, i.e., the gradient zone will no longer be swapped. Similar, if the target
device does not require a workspace, there is no need to swap this zone.

Our approach of inexpensive model switching is very beneficial for many
practical learning problems using multiple models. This is especially the case
for different instances of the same model, or different parameters for the same
model. For example, recommender systems need to train at least one model per
user, or per category of users. Exploration with various models an architectures
(e.g. different number of layers) would lead to additional effort during the
compilation phase. But even in this case, switching between the pre-compiled
models is efficient as we only require a single memset on the allocated area
and one memcpy per zone. Without an effective model switching mechanism,
one would need to costly allocate and free the memory dynamically during
learning—and this per model.

3.4 CALCGRAPH summary

From the perspective of the CALCGRAPH as a model (of neural networks) the
CALCGRAPH can be considered as an abstraction over the generated source
code that is executed. The CALCGRAPH model, for example, abstracts from
the fact that generated byte code is branchless, from different optimizations
for GPU/BLAS/CPU, from any platform specfics etc. From the perspective of
the process from a neural network to the CALCGRAPH, it, or more specifically
the Paths and Operators, can also be regarded as a decomposition. The
main features of our CALCGRAPH approach can be summarized as follows.

— We compile each CALCGRAPH before execution which gives us full control
over the memory consumption.

— We can either choose to set an upper limit and select the batch size accord-
ingly or use the batch size as an input to derive the memory requirements
of the full process.

— The generated byte code is branchless which assures that the execution
runs without the risk of slowdowns caused by wrong branch prediction.

— The used memory (the CalcHeap) is split into zones (forward, gradient,
optimizer, workspace) and the position of each variable within these zones
is given by an offset which allows for fast access and omits the need for
bound checks.

— The CalcHeap as well as the individual zones are allocated statically to
avoid expensive memory allocation operations during model execution.

— Lastly, this scheme also allows us to switch between individual precompiled
models efficiently as we can reinitialize blocks or even the full CalcHeap in
one go and re-partition the memory according to the new compiled model.

The deterministic and yet flexible memory allocation as well as the runtime
optimizations, present CALCGRAPH as a perfect solution for applications with
strict resource constraints such as edge-Al. Furthermore, the ability to switch
efficiently between several precompiled models, provides a solid foundation for
model exploration.
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3.5 A CALCGRAPH example

In this section, we show a practical example on how to use our CALCGRAPH to
train a simple linear model: O = W 1. Algorithm [2[shows the declaration of a
CALCGRAPH. First, we create a CALCGRAPH, then we configure the input and
output variables as two placeholders. These store the data from the dataset.
In a second step, we create a variable W marked as “to optimize”, and specify
its initialization method as a uniform distribution. Finally, we configure the
variables’ descriptors by stating the data type and dimensions of the tensors.
We use 0 to indicate that this dimension can hold up a variable batch size
of dimensions (depending on the available memory at runtime). In short, in
this example, we are converting a 6-inputs problem to 3-outputs using a linear
relation, regardless of what the batch size will be.

Algorithm 2 CalcGraph declaration

1: calcGraph + CalcGraph() > init new Calcgraph
2: I < calcGraph.newPlaceholder() > create placeholder vars
3: O « calcGraph.newPlaceholder()

4: W < calcGraph.newV arOpt() > create optimizable var
5: W.initUniform(min = 0.1, maz = 0.9) > init W uniform
6: calcGraph.configureVar(I,datatype = Double, size = [0, 6]) > batchSize * inputs
7: calcGraph.configureVar(O, datatype = Double, size = [0, 3]) > batchSize * outputs
8: calcGraph.configureVar(W,datatype = Double, size = [6, 3]) > inputs * outputs

Next, in Algorithm [3| we define the operations to be done on the CALC-
GRrAPH. To show an example of multi-path usage, we create two paths. The
first one is a learnable path that contains the main sequence of operations:
multiplication between W and I, subtraction with the output, and an abso-
lute value as a loss metric. The second path is an additional post-processing
path that calculates RMSE as an extra metric. Again, in this example, we
show how a very simple linear model can be defined. For now, we have not
implemented the logic needed for more advanced convolutional models. How-
ever, after the implementation is done, creating a more recent deep neural
network model like e.g. ResNet [29] would be possible in the same way as
portrayed in Algorithm [3] with the only difference being additional appended
steps for a path and new available functions to declare layers like convolution
or max-pooling.

After the declaration of variables, paths, and operations is done, we allo-
cate memory through the CalcHeap, associate it to the current CALCGRAPH
and compile the model. As described in Section [3.2] we can either choose to
allocate a fixed memory size and derive the maxmimum batch size for this (Al-
gorithm [)) or we give a target batch size as input and compute the required
memory size (Algorithm .

The last step is to get the dataset, move it to the CalcHeap, run a forward
and backward on path 0, and a forward on path 1. Finally, we can get the
RMSE metric result. This is shown in Algorithm [6]
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Algorithm 3 Paths declaration

Require: calcGraph initialized
: po < newPath(backward = True) > create new path with backward enabled
: po.addStep(Y, matmul (I, W)) >Y =1xW
: po.addStep(D, sub(Y, O)) >D:=Y -0
: po.addStep(E, abs(D)) > get absolute error
: po.setOptimizer(sgd(learningRate = 0.001)) > set optimizer for path pg

calcGraph.addPath(po)

© 0D U A WN

. calcGraph.addPath(p1)

: p1 « newPath(backward = False) »> create new RMSE path with backward disabled
: po.addStep(R,rmse(Y, 0)) > R :=rmse(Y,O)

Algorithm 4 CalcHeap declaration for given max memory size

Require: calcgraph and paths initialized; memSize; target Device

1: calcHeap < CalcHeap()

2: > compute max batchSize for memSize

3: batchSize + calcGraph.computeM ax Batch(memSize, target Device)

4: calcGraph.compile(batchSize) > compile calcGraph with batchSize
5: calcHeap.allocate(memSize) > allocate memory

Algorithm 5 CalcHeap declaration for given batch size

Require: Calcgraph and paths initialized; batchSize, targetDevice

1: calcHeap < CalcHeap()

2: > compute memory requirement for batchSize

3: neededHeap = calcGraph.compute Memory(batchSize, target Device)

4: calcGraph.compile(batchSize) > compile calcGraph with batchSize
5: calcHeap.allocate(neededHeap) > allocate memory

Algorithm 6 Running the CalcGraph

Require: calcGraph compiled; calcHeap allocated; input and target tensor

1: timestamp < getCurrenTime()
2: calcGraph.setSeed(timestamp) > set random seed for learning
3: caleGraph.initialize(calcHeap) > set all zones and variables
4: > One round of learning on pg
5: calcHeap.set(calcGraph, I, input) > populate I with input
6: calcHeap.set(calcGraph, O, target) > populate O with target
7: calcGraph. foward(po) > run forward on po
8: calcGraph.backward(po) > run backward on pg
9: > forward on p; to get rmse
10: calcGraph.forward(pi) > run forward on p;
11: rmse + calcGraph.getVar(R)

4 Evaluation

This section reports on the experiments we performed to assess the capa-
bilities of CALCGRAPH comparing it against two state-of-the-art solutions:

TensorFlow (TF) and PyTorch.
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4.1 Experimental setup

For all experiments, we either report on the main memory consumption, GPU
memory consumption, or execution time as key performance indicators.

We use the MNIST dataseﬂ for all our experiments. MNIST is a large
database of handwritten digits that is often used for training various image
processing systems and for training and testing in the field of machine learning.
More specifically, we use the greyscale colors from 0-255 in 28x28 pixels for
our experiments. This results in 784 inputs (28x28 pixels) and 10 outputs (one
for each digit between 0 and 9). The goal is to train a machine learning model
that can accurately detect the correct handwritten digit. The MNIST dataset
is a well-known and often used dataset for machine learning experiments. It
is limited in scope, results are known and therefore allows us to focus on
performance evaluation and use the accuracy as a crosscheck criteria.

For all the approaches, we train a neural network with the same architec-
ture: three dense layers, fully connected, using a bias. The first layer converts
the 784 inputs to 64 outputs, uses a bias and a sigmoid activation function.
The second layer maps the remaining 64 inputs to 64 outputs, uses again a
bias and a sigmoid activation function. Finally, the third layer converts the 64
inputs to the expected 10 outputs, uses a bias and a softmax to get the proba-
bilities and categorical cross entropy loss. Adam [36] is used as optimizer. We
use a dataset with train = test = 10,000 images. This means we have a total
of 10,000x784 inputs. For all approaches we force a transfer to GPU after each
round. This can be optimized depending on the batch size, but for simplicity
reasons we emulate here a transfer after each round.

We executed each experiment 20 times to assess the reproducibility of our
results. Unless stated otherwise, all the reported results are the average of the
20 executions and all experiments have been executed on a computer with
an Intel Core i7-7820X CPU at 3.60Ghz with 16 cores, 64GB RAM, and a
SSD as storage. We used a Nvidia GeForce GTX 1060 with 6GB RAM. As
OS, we use Manjaro Linux (an Arch Linux derivate) in version 20.0.3. We
use TensorFlow (GPU) in version 2.2.0, without eager execution and fully
compiled. For PyTorch we use version 1.4.0. We use Python in version 3.8,
CUDA in version 10.1.243 and the cudnn library in version 7.6.3. After each
experiment we restart the computer to avoid any side effects.

We share the source codeﬁ to reproduce our experiments on TensorFlow
and PyTorch. Although we advocate the open science principles, we do not
intend to share the source code or executable of CALCGRAPH at this time.
We are currently working on a licensing model of CALCGRAPH, which is a
commercial project at its core. Nonetheless, sharing the under- lying principles
and demonstrating its optimization potential is of interest to the scientific
community.

2 http://yann.lecun.com/exdb/mnist/
3 https://hub.datathings.com/papers/2021-sosym-journal
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Fig. 9: Single model: Train accuracy (left) and test accuracy (right) of CALC-
GRrAPH, TensorFlow, and PyTorch.

4.2 Accuracy of a single model

We first evaluate the accuracy of a single CALCGRAPH model. The accuracy
is an important indicator and different approaches are only comparable if they
reach a comparable accuracy. In the following, we compare CALCGRAPH, Ten-
sorFlow, and PyTorch. In order to do so, we train our model (as described
in for 400 rounds and distinguish between the train- and test accuracy.
To compare the three frameworks, we fix the batch size to 10,000. For CALC-
GRAPH, we could have also decided to fix the size of the CalcHeap and derive
the batch size for this size. However, since this is not feasible for the other
frameworks, we fix the batch size instead.

Figure [9] shows the train accuracy (left side) and test accuracy (right side)
of all three frameworks over the 400 rounds. As the figures show, our im-
plementation of CALCGRAPH reaches the same range of accuracy than
TensorFlow and PyTorch. The reason for the slight differences are the random
initialization values. If we use the exact same initialization values, we would
get the exact same curves. From this experiment, we can conclude that our
CALCGRAPH model is in terms of train accuracy and test accuracy comparable
with two state-of-the-art frameworks.

Next, we will evaluate the efficiency of a single CALCGRAPH model in terms
of memory consumption (main- and GPU memory) and execution time.

4.3 Memory efficiency and execution time of a single model

In this section, we evaluate the memory requirements—both main memory
and GPU memory—and the execution time for a single CALCGRAPH model.
We use the same experimental setup than for the previous experiment (see
for the description). We compare the results again to TensorFlow and
PyTorch. It is important to notice that we do not measure the time to parse
the csv file. In fact, we parse the csv file outside the experiment and store
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already the tensors in a binary format. We do this, because we do not want
to bias the experiment by in fact evaluating the csv parser implementation
of the different frameworks. The goal of this experiment is to evaluate how
efficient a single CALCGRAPH model is compared to the state-of-the-art. In
this experiment, we train only a single model and therefore not benefit from
our model switching mechanism. Instead, we evaluate here the impact of our
optimizations regarding memory efficiency and execution time. Namely, we
precompile the model before execution, generate brancheless bytecode and set
up the memory (CalcHeap) in such a way to reduce lookups and allocations
to a minimum. Please refer to Section [3] for details on our optimizations.

We train the model for 400 rounds and we fiz the batch size to 10,000.
Again, for the CALCGRAPH, we could have also decided to fix the size of the
CalcHeap and derive the batch size, but since this is not possible for Ten-
sorFlow and PyTorch, we fix again the batch size. A first advantage of our
CALCGRAPH is that the exact needed CalcHeap size is automatically derived
before the execution. In this experiment, for a batch size of 10,000, we need a
CalcHeap of 83MB. TensorFlow allocates by default the whole available GPU
memory, in our case around 5GB (available and not used by the operating
system). There are several ways to limit this behavior and restrict the amount
that TensorFlow can allocateﬁ However, it is difficult to derive the minimum
amount that a certain execution requires and can be only determined experi-
mentally for every model and batch size. This means different setups need to be
executed until we find the minimum possible configuration which does not fail
during execution. This can become quickly a very time consuming task. While
it is already difficult for a single model, it is especially problematic in case of
model exploration, where we train multiple models with different configura-
tions. Nonetheless, we experimentally evaluated the minimum GPU memory
that TensorFlow needs to execute the model. We started with a memory size of
0 and then increased in steps of 10MB until the execution successfully finished.
For all experiments, we limit the GPU usage to this experimental minimum.
PyTorch always allocates the GPU memory dynamically on demand i.e., we
cannot influence the GPU memory allocation.

Figure shows the measured values for CALCGRAPH, TensorFlow, and
PyTorch. There are several important points to note. First, it can be seen that
CALCGRAPH requires a lot less memory—both main memory as well as GPU
memory—than TensorFlow and PyTorch. Looking at the execution time, it
can be seen that CALCGRAPH is also faster than PyTorch and TensorFlow.
Note that for CALCGRAPH and TensorFlow, the model is precompiled and
the time to compile is not included in our experiment. PyTorch models on the
other side are dynamically compiled during execution. We can conclude that
for a single model CalcGraph is slightly faster than TensorFlow and
PyTorch while using less main- and GPU memory.

It is important to notice that the total memory needed for our CALCGRAPH
is 247MB main memory and 193MB of GPU memory, although we explained

4 https://www.tensorflow.org/guide/gpu
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Fig. 10: Single Model: Memory consumption (left) and execution time (right)
of CALCGRAPH, TensorFlow, and PyTorch. Lower values are better.

earlier that the CalcHeap size is just 83MB. As we execute the CALCGRAPH
on GPU, one could expect that the GPU usage should be only 83MB. Indeed,
the CALCGRAPH itself only requires a heap of 83MB. However, the differ-
ence of GPU memory, around 110MB, are due to required CUDA libraries
and handlers. The same counts for TensorFlow. However, TensorFlow loads
around 190MB of libraries and handlers. The actual computational graph of
TensorFlow has almost exactly the same size than the one of CALCGRAPH,
80MB. However, it needs to be evaluated experimentally.
In the next section, we will evaluate a multi-model scenario.

4.4 Multi-model performance

So far, we have shown that even for a single model our proposed CALCGRAPH
is faster than TensorFlow and PyTorch while using less memory resources. In
this section, we now switch to model exploration and training multiple models.
The goal of this section is to evaluate the effect of model switching (reusing the
CalcHeap) on the performance. We simulate a hyperparameter optimization
use case and train multiple generated models. We use the same model as in
the previous sections (see for the description). We fix the structure of the
neural network for this experiment and randomly modify learning parameters,
optimizers, and initialization methods for the weights. These parameters are
not very interesting in the context of this experiment. To be able to compare
the different approaches, they just need to be the same along all compared
frameworks. The idea is to simulate a hyperparameter optimization scenario
as a use-case of model exploration as introduced in Section Therefore, the
interesting parameters are the number of models to train, and the learning
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rounds per model. We report on the execution time for different numbers of
learning rounds per model (1, 10, and 30) and different numbers of models to
train (1, 10, 100, 1000). Like in the previous sections, we compare these values
to TensorFlow and PyTorch.

Figure [L1| presents the result in form of a scatter chart. The x-axis of the
chart shows the number of models to train, multiplied by the learning rounds.
This number reflects the computational complexity of a task. The y-axis shows
the execution time in milliseconds to finish this task. Both axis use a logarith-
mic scale. This chart shows the gain of our CALCGRAPH compared to Tensor-
Flow and PyTorch depending on the number of models and learning rounds.
It shows that the gains are bigger for lower total computational complexity.
This is not surprising, as it means that the more expensive a computation gets
the less impact our fast model switching and optimizations have on the total
execution time. Unfortunately, it is not possible to reliably measure the time
TensorFlow and PyTorch need for memory allocations when moving between
models. However, the literature supports our claim that these allocations can
be dreadful and in consequence, developing more efficient allocators is an on-
going task [2II422)39]. Our own results show that our optimizations have a
significant impact that only becomes negligible when the total computational
complexity of a task becomes the dominant factor.

The conducted experiment demonstrates that CALCGRAPH outperforms
TensorFlow and Pytorch for specific use cases of model exploration. One such
use case is meta-learning where, except for online learning, 10 to 30 learning
rounds are considered as the most relevant scenario [67]. After this amount of
rounds we should know if we have already a better model and can stop the
exploration of this model. The area highlighted in the figure in blue is what we
therefore consider as a “typical” meta-learning case. It is important to notice
that this corresponds to one single meta-learning step. Note that these gains
are cumulative. The more meta-learning steps we do, the more the benefits
even for the worst case scenario running for a long time.

Furthermore, we argue that CALCGRAPH is perfectly suited for adapting to
specific real world scenarios where it can also be assumed that possible models
can be quickly filtered within lower number of learning rounds. In addition,
in industrial applications, solutions are often replicated for many similar use
cases once they work successfully. Here again, fine-tuning models to specific
processes should reflect the highlighted area of Figure

4.5 Parallel execution

Knowing the memory requirements of a CALCGRAPH model in advance al-
lows us to optimize the usage of the available resources by executing as many
models in parallel as possible. In this experiment, we report on the number
of models that we can execute in parallel. We use the same model than in
Section but execute it in n parallel processes. The limiting factor is un-
surprisingly the available GPU memory, which is 5GB. As we discussed previ-
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Fig. 11: Multiple models: execution time for a varying computational com-
plexity (number of models multiplied by the the number of learning rounds).
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ously, for CALCGRAPH, we know exactly how much GPU memory one model
needs. Therefore, we can just split the available GPU memory and know in
advance how many models we can run in parallel. For TensorFlow the num-
ber of models that we can run in parallel depends on how much we limit the
GPU memory that TensorFlow is allowed to allocate. In Section we ex-
perimentally evaluated the minimum GPU memory. As TensorFlow otherwise
allocates the whole available GPU memory—and therefore only one model can
be executed at a time—we reuse the evaluated minimum size in this experi-
ment to maximize the number of models that can be theoretically executed
in parallel with TensorFlow. As a reminder, CALCGRAPH requires 83MB for
the CalcHeap and 110MB for CUDA handlers and libraries. TensorFlow needs
80MB for the computational graph and 190MB for the CUDA handlers and
libraries, i.e., around 80MB more than CALCGRAPH. TensorFlow allocates
the handles dynamically and not statically. Only the computational graph is
allocated statically. This means, similar to PyTorch, it crashes not in advance
but during the execution.

For PyTorch, as GPU memory is allocated dynamically, we can only eval-
uate experimentally how many models we can execute in parallel. Therefore,
we increase the number of models in steps of one, till PyTorch fails to execute
them. Figure [12| shows the number of models that we can execute in parallel
for the different frameworks.



32 Joe Lorentz et al.

Models in parallel

00 CaLcGrapPH
ij 30 - ﬂ B [0 TensorFlow
g 0 PyTorch
E 20 |~ 18 *
o
-
(&)
E
E 0] 8 .
Z
0
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As can be seen in the figure, CALCGRAPH allows to execute the most
models in parallel on the available resources. This has the potential for huge
speedups. The exact factor depends on different parameters. For example, the
number of available GPU cores. As most machine learning tasks are build
for parallelization, it can easily happen that already a single model saturates
all cores on a single GPU. In such cases, executing several models in parallel
would have only limited impact. The ratio between CPU- and GPU load can
also heavily impact the speedup of parallelization. In many cases, the higher
the CPU load, the higher the speedup. This is due to the fact that the GPU
processing is already very optimized for parallelization and therefore the GPU
cores are more saturated. Whereas CPU cores in modern hardware are often
less saturated and can therefore benefit more from the parallelization. There-
fore, the higher the CPU load in relation to the GPU load is, the higher we
can expect the speedup due to model parallelization. A similar parameter is
the ratio between data transfer (between CPU and GPU) and GPU compu-
tation. Depending if one takes much more time than the other, the impact of
model parallelization is heavily influenced. In future work, we plan to focus on
optimizing the parallel computation unit occupancy, i.e., splitting the num-
ber of available GPU cores depending on the complexity of the CALCGRAPH
model and statically allocate these cores. To conclude, the potential speedup
when executing models in parallel is huge. However, the exact speedup factor
depends on many parameters and is difficult to quantify in a general manner.

4.6 Threat to validity

We have decided to evaluate our approach on the well-known MNIST dataset
that is often used to evaluate machine learning approaches, e.g., for new neu-
ral network architectures. Despite the fact that we showed that our proposed
CALCGRAPH can outperform state-of-the-art frameworks like TensorFlow and
PyTorch both in terms of execution time as well as in memory consumption,
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one threat to validity remains that the evaluation case study might be espe-
cially appropriate for the presented solution. Additional case studies might
be needed to be considered to better estimate the general applicability of the
presented approach. Nonetheless, as we argued, the evaluated case study is
representative for the use cases targeted by our approach.

5 Limitations and future work

Our CALCGRAPH approach and implementation comes with a number of lim-
itations, which we plan to address in future work.

First, as stated throughout this article, our CALCGRAPH is an abstraction
over differentiable programming layers and therefore suited for deep learn-
ing using neural networks and other gradient-based optimization algorithms.
However, it is not well adapted for other learning algorithms. Nonetheless, it
could also be used in the context of general optimization problems, scientific
computing, and simulations—where a static memory allocation can also ease
the deployment. One track of post-processing, that is of particular interest to
us, is to provide explanation for deep neural network decisions. Some state-of-
the-art methods in this domain reuse the backpropagation algorithm, that is
also used for training models, in some way (e.g. [53l[64]). As we have already
implemented backpropagation for CALCGRAPH, a good first step could be to
implement such methods on top of our approach.

As mentioned in Section [3.1] the set of CALCGRAPH operators defines the
instruction set, i.e., the possible operations that can be performed on variables.
While our goal is to eventually implement all operators defined in ONNX, some
of the operators defined in TensorFlow [5] related to image processing, as well
as some additional ones, we have not yet reached this goal. All operators
need to be implemented for all data types, for each execution mode (CPU,
BLAS, and CUDA), and for each calculation mode (forward and backward).
Currently, we only support around 1/3 of the operators defined in ONNX
and are therefore not yet fully compatible with ONNX models. This is also
the main reason why we limited our experiments to using a simple linear
model and MNISTE| as a dataset. We are not yet able to model more recent
convolutional neural networks such as ResNet [29]. As soon as the latter is
possible, we plan to perform further experiments on standard benchmarks like
ImageNet [50] for vision or BERT [2]] for language analysis.

In Section[4 we introduced the hardware setup we used for our experiments.
We opted for commodity CPU and GPU that are commonly used in personal
desktop setups. In this paper, we focus on domains with constrained hardware
capabilities. Hardware specifically designed for edge-Al, like the Nvidia Jetson
family [58], would be an extreme example of this and therefore, interesting
to investigate in the future. The Jetsons are based on ARM-chipsets which
makes it more difficult to port our solution. Therefore, we consider evalua-
tions on that sort of hardware out of scope for this paper but identify running

5 http://yann.lecun.com/exdb/mnist/
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CALCGRAPH on a Jetson as an important next step. At the moment it is
also not possible to distribute a CALCGRAPH execution over multiple GPUs.
However, for the future we would like to allow distributed execution to make
applications based on CALCGRAPH even more flexible and efficient. We expect
that the optimization regarding efficiency, that we introduced for single hard-
ware components in this paper, will translate to multiple hardware instances
as well.

Another limitation of our current implementation is that the minimum
amount of memory required is defined by the size of a CALCGRAPH with
batch size equals to one. In future work we plan to investigate how to over-
come this limitation, e.g., by splitting a CALCGRAPH into several parts. A full
CALCGRAPH could be broken down into one CALCGRAPH per operator, etc.
Another promising approach we want to look into is to remove intermediate
variables and recalculate them when needed again. An interesting approach
to reduce the memory needed for training deep neural networks is so-called
gradient-checkpointing [18]. The idea is that the memory expensive part of
training deep neural networks is computing the gradient of the loss by back-
propagation. This requires to keep the results of the forward pass in memory.
However, by checkpointing nodes in the computation graph defined in the
model, and then recomputing the parts of the graph in-between those nodes
during backpropagation, it is possible to reduce the required memory since not
all results in the forward pass need to be kept. However, given the fact that a
CALCGRAPH is only a lightweight descriptor, even on very limited hardware,
the fact that this descriptor needs to fit into memory is not a big limitation.

Currently, the execution granularity of a CALCGRAPH is per operator.
While at a first glance this seems intuitive, it means that the ordinal pointer
needs to be kept in the CPU for each operator. In future work, we plan to
investigate what advantages and disadvantages another granularity, e.g., per
path would have. The idea is that with a path granularity, you would only
need the ordinal pointer once for the whole path instead of for every operator.

6 Related work

While in our work, we also focus on neural networks, our contribution cen-
ters around the idea of CALCGRAPH as an efficient foundation to build model
exploration on top and to contain resource consumption for constrained do-
mains. In this sense, our work is comparable with the computational graph of
TensorFlow [6] or PyTorch [45]. But unlike TensorFlow’s computational graph,
CALCGRAPH has been specifically designed with model exploration in mind.
We leverage model abstractions to generate highly optimized code, predict
the required resources in advance in order to optimally leverage the available
resources, and enable a way to efficiently switch models. These are key char-
acteristics for efficient model exploration use cases such as meta-learning [
60,61], neural architecture search [70] or ensemble learning [641[66]. In other
words, we focus on the enablers of efficient model exploration rather than on
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the exploration, i.e., search algorithm, itself. Both, TensorFlow’s computa-
tional graph and our CALCGRAPH are computational graph models and both
are statically compiled. However, the key difference is the way we allocate and
manage memory. First, TensorFlow allocates all available GPU memory (can
be limited to a value) at once. While this allows for intelligent caching strate-
gies and some other optimizations, like reduced transfers from CPU to GPU,
it makes it difficult to optimally exploit the available resources and thus to
execute as many models in parallel as possible. Secondly, TensorFlow allocates
the main memory dynamically. This makes it not just hard to know in advance
how much main memory will be needed but also makes model switching more
expensive. In contrary, CALCGRAPH is optimized to handle multi-models more
efficiently and to optimize the usage of the available resources. By computing
main memory and GPU memory beforehand and by statically only allocating
what is needed, CALCGRAPH can optimize the usage of the available resources
and increase the number of models that can be executed in parallel. In ad-
dition, our proposed model switching mechanism further increases the usage
of available resources. PyTorch on the other hand is not statically compiled
and allocates memory (main memory and GPU memory) dynamically. While
PyTorch is heavily optimized for many deep learning tasks, the fact that mem-
ory is dynamically allocated can lead to unforeseen out of memory exceptions
during the execution. In addition, not knowing the resource requirements be-
forehand makes it also more difficult to optimize the usage of the available
resources. Thus making it more difficult to optimize it for meta-learning, i.e.,
multi-model scenarios.

The problem that required computational resources (time and memory)
are often not known in advance has been discussed in the literature in differ-
ent areas. Priya et al., [48] focus their work on machine-learning problems.
They propose to apply a meta-learning framework to relate characteristics of
datasets and current machine state to the actual execution time. They pre-
dicted the time of six classifiers over 78 datasets using four regression algo-
rithms and showed that their approach can outperform commonly used base-
line methods. Lee and Schopf [I5] also argue that knowing the execution time
and the resources usage of long running tasks in advance is very beneficial.
Besides avoiding unnecessary waiting times, it may enhance the scheduling
and thus minimize the overall execution time. While they focus their work not
on meta-learning (or machine learning) tasks but on parallel applications run-
ning in shared environments, the principle problems remain the same. They
propose to use regression methods and filtering techniques to derive the appli-
cation execution time without using standard performance models. First re-
sults show that their approach delivers tolerable prediction accuracy and can
improve the accuracy dramatically by using appropriate filters. Rather than
predicting the memory consumption, as the above mentioned works suggest,
our proposed approach leverages models as descriptors to precisely compute
the memory requirements in advance and then optimally utilizes the available
resources. Instead of forecasting that the result will take so and so long and
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require that much memory, our approach let you specify the time and memory
specifications and tries to find the best result respecting these specifications.
The high computational demands of deep learning is a current hot topic of
computer science. As the technology is dominating machine learning bench-
marks in many domains like image [50] or language [21] processing, it is only
logical that we see more and more real world applications being developed.
However, the integration is often hampered by high computational demands,
with unsuitable memory resources on the target machines or unsatisfactury
execution times [44]. Several research directions exist to reduce the resource
consumption of deep learning applications, most notably pruning, quantization
and knowledge distillation. Network pruning [I3}[38] tries to identify unimpor-
tant parts of the neural network that can be removed with little effect on
accuracy, leading to faster, smaller models. Quantization, mergers network
weights and values into buckets to move from floating-point to a lower preci-
sion representation [2334]. Moving to integer precision is reported to reduce
the memory footprint and inference time up to a factor of 16x. The key idea of
knowledge distillation is to use the state of an already trained big network to
help to improve the performance of a smaller and faster model [T9,30]. Our ap-
proach of efficient memory management to improve the resource consumption
of differential programming is orthogonal to the just mentioned techniques.
This means that in the future, we could potentially use compressions methods
to further increase the efficiency of CALCGRAPH. In addition, the techniques
again require some sort of model exploration to determine which parts to com-
press. This is a task that can be processed more efficiently using our approach.

7 Conclusion

In this article, we discussed taming the high costs of differential program-
ming, with a focus on domains with constrained hardware resources and ef-
ficient model exploration. We proposed CALCGRAPH, a novel model abstrac-
tion of differentiable programming layers, which is particularity suitable for
deep learning and neural networks. We showed that CALCGRAPH provides
an efficient foundation to built model exploration implementations on top.
We leveraged models (CALCGRAPHS), similar to how some compilers use ab-
stract syntax trees (AST), to drive and optimize the compilation process. More
specifically, our article discussed the following three contributions:

— First, we showed that our model compiler is able to generate optimized
branchless byte code that can be executed as a fixed sequence of opera-
tions. Most importantly, this allows to compute the required main- and
GPU memory size for a CALCGRAPH model and a given batch size—or an
optimal batch size for a given memory size—at compile time.

— Secondly, we discussed how we minimize expensive memory allocations by
preallocating the entire needed memory (computed by the model compiler)
and then reusing it by switching models from storage to the preallocated
memory and vice versa. This avoids expensive malloc and free operations
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during runtime and allows us to run common model exploration tasks,
such as hyperparameter optimization or neural architecture search, with
constant memory. We refer to this as model switching.

— Last but not least, we discussed how knowing the memory requirements
at compile time enables us to further optimize the usage of the available
resources by scheduling as many models as possible for parallel execution
and sharding the executions among the available resources.

We argued that these points are key enablers to tame the high costs of deep
learning and allow for model exploration even on constrained hardware re-
sources. As discussed, precomputing the required memory before the actual
execution also avoids that a learning algorithm runs for hours or even days
and then ends with an out of memory exception, a common problem in many
frameworks today. CALCGRAPH is designed with model exploration in mind.
We demonstrated the efficiency of CALCGRAPH by showing that it can out-
perform state-of-the-art frameworks like TensorFlow and PyTorch in terms of
execution time as well as memory consumption. We evaluated a meta-learning
scenario as a use-case of model exploration and identified the area (in terms of
computational complexity), for which our approach yields the greatest advan-
tages. We argue that this area is the most relevant for our target domain of
flexible machine learning in real world applications with constrained hardware
resources.
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