[en] Chemically processed methylammonium tin-triiodide (CH3NH3SnI3) films include Sn in different oxidation states, leading to poor stability and low power conversion efficiency of the resulting solar cells (PSCs). The development of absorbers with Sn [2+] only has been identified as one of the critical steps to develop all Sn-based devices. Here, we report on coevaporation of CH3NH3I and SnI2 to obtain absorbers with Sn being only in the preferred oxidation state [+2] as confirmed by X-ray photoelectron spectroscopy. The Sn [4+]-free absorbers exhibit smooth highly crystalline surfaces and photoluminescence measurements corroborating their excellent optoelectronic properties. The films show very good stability under heat and light. Photoluminescence quantum yields up to 4 × 10^-3 translate in a quasi Fermi-level splittings exceeding 850 meV under one sun equivalent conditions showing high promise in developing lead-free, high efficiency, and stable PSCs.
Disciplines :
Physics
Author, co-author :
SINGH, Ajay ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
HIEULLE, Jeremy ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
FERREIRA MACHADO, Joana Andreia ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
GHARABEIKI, Sevan ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Zuo, Weiwei; Institute for Photovoltaics (IPV), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
FAROOQ, Muhammad Uzair ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
PHIRKE, Himanshu ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Saliba, Michael; Institute for Photovoltaics (IPV), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany ; Helmholtz Young Investigator Group FRONTRUNNER, IEK5-Photovoltaik, Forschungszentrum Jülich, 52425, Jülich, Germany
REDINGER, Alex ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
yes
Language :
English
Title :
Coevaporation Stabilizes Tin-Based Perovskites in a Single Sn-Oxidation State
Publication date :
23 August 2022
Journal title :
Nano Letters
ISSN :
1530-6984
eISSN :
1530-6992
Publisher :
American Chemical Society, Washington, United States - District of Columbia
FNR - Fonds National de la Recherche [LU] DFG - Deutsche Forschungsgemeinschaft [DE] Spanish Ministry of Science and Education Federal Ministry for Economic Affairs and Energy Israel Ministry of Energy CE - Commission Européenne [BE]
Solar Cell Efficiency Chart, NREL; https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220126.pdf (accessed on 07 May 2022).
Qiu, L.; Ono, L. K.; Qi, Y. Advances and challenges to the commercialization of organic-inorganic halide perovskite solar cell technology. Mater. Today Energy 2018, 7, 169-189, 10.1016/j.mtener.2017.09.008
Li, J.; Cao, H.-L.; Jiao, W.-B.; Wang, Q.; Wei, M.; Cantone, I.; Lü, J.; Abate, A. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. commun. 2020, 11, 1-5
Wang, M.; Wang, W.; Ma, B.; Shen, W.; Liu, L.; Cao, K.; Chen, S.; Huang, W. Lead-free perovskite materials for solar cells. Nano-Micro Lett. 2021, 13, 1-36, 10.1007/s40820-020-00578-z
Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; Petrozza, A.; Herz, L. M.; Snaith, H. J. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061-3068, 10.1039/C4EE01076K
Wu, T.; Liu, X.; Luo, X.; Lin, X.; Cui, D.; Wang, Y.; Segawa, H.; Zhang, Y.; Han, L. Lead-free tin perovskite solar cells. Joule 2021, 5, 863-886, 10.1016/j.joule.2021.03.001
Wan, Z.; Lai, H.; Ren, S.; He, R.; Jiang, Y.; Luo, J.; Chen, Q.; Hao, X.; Wang, Y.; Zhang, J. et al. Interfacial engineering in lead-free tin-based perovskite solar cells. J. Energy Chem. 2021, 57, 147-168, 10.1016/j.jechem.2020.08.053
Kumar, P.; Ahmad, K.; Dagar, J.; Unger, E.; Mobin, S. M. Two-Step Deposition Approach for Lead Free (NH4)3Sb2I9Perovskite Solar Cells with Enhanced Open Circuit Voltage and Performance. ChemElectroChem. 2021, 8, 3150-3154, 10.1002/celc.202100957
Huang, Y.; Su, J.; Li, Q.; Wang, D.; Xu, L.; Bai, Y. Structure, optical and electrical properties of CH3NH3SnI3single crystal. Phys. B: Condens. Matter 2019, 563, 107-112, 10.1016/j.physb.2019.03.035
Ma, L.; Hao, F.; Stoumpos, C. C.; Phelan, B. T.; Wasielewski, M. R.; Kanatzidis, M. G. Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3films. J. Am. Chem. Soc. 2016, 138, 14750-14755, 10.1021/jacs.6b09257
Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019-9038, 10.1021/ic401215x
Takahashi, Y.; Hasegawa, H.; Takahashi, Y.; Inabe, T. Hall mobility in tin iodide perovskite CH3NH3SnI3: Evidence for a doped semiconductor. J. Solid State Chem. 2013, 205, 39-43, 10.1016/j.jssc.2013.07.008
Aldamasy, M.; Iqbal, Z.; Li, G.; Pascual, J.; Alharthi, F.; Abate, A.; Li, M. Challenges in tin perovskite solar cells. Phys. Chem. Chem. Phys. 2021, 23, 23413-23427, 10.1039/D1CP02596A
Cao, J.; Yan, F. Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 2021, 14, 1286-1325, 10.1039/D0EE04007J
Wang, P.; Li, F.; Jiang, K.-J.; Zhang, Y.; Fan, H.; Zhang, Y.; Miao, Y.; Huang, J.-H.; Gao, C.; Zhou, X.; Wang, F.; Yang, L.-M.; Zhan, C.; Song, Y. Ion Exchange/Insertion Reactions for Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells. Adv. Sci. 2020, 7, 1903047, 10.1002/advs.201903047
Nishimura, K.; Kamarudin, M. A.; Hirotani, D.; Hamada, K.; Shen, Q.; Iikubo, S.; Minemoto, T.; Yoshino, K.; Hayase, S. Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy 2020, 74, 104858, 10.1016/j.nanoen.2020.104858
Jiang, X.; Wang, F.; Wei, Q.; Li, H.; Shang, Y.; Zhou, W.; Wang, C.; Cheng, P.; Chen, Q.; Chen, L. et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 2020, 11, 1-7
Hasan, S. A. U.; Lee, D. S.; Im, S. H.; Hong, K.-H. Present Status and Research Prospects of Tin-based Perovskite Solar Cells. Solar RRL 2020, 4, 1900310, 10.1002/solr.201900310
Aldamasy, M.; Iqbal, Z.; Li, G.; Pascual, J.; Alharthi, F.; Abate, A.; Li, M. Challenges in tin perovskite solar cells. Phys. Chem. Chem. Phys. 2021, 23, 23413-23427, 10.1039/D1CP02596A
Lanzetta, L.; Webb, T.; Zibouche, N.; Liang, X.; Ding, D.; Min, G.; Westbrook, R. J. E.; Gaggio, B.; Macdonald, T. J.; Islam, M. S.; Haque, S. A. et al. Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nat. Commun. 2021, 12, 1-11, 10.1038/s41467-021-22864-z
Leijtens, T.; Prasanna, R.; Gold-Parker, A.; Toney, M. F.; McGehee, M. D. Mechanism of Tin Oxidation and Stabilization by Lead Substitution in Tin Halide Perovskites. ACS Energy Lett. 2017, 2, 2159-2165, 10.1021/acsenergylett.7b00636
Lee, J.-W.; Park, N.-G. Chemical approaches for stabilizing perovskite solar cells. Adv. Energy Mater. 2020, 10, 1903249, 10.1002/aenm.201903249
Park, C.; Choi, J.; Min, J.; Cho, K. Suppression of Oxidative Degradation of Tin-Lead Hybrid Organometal Halide Perovskite Solar Cells by Ag Doping. ACS Energy Lett. 2020, 5, 3285-3294, 10.1021/acsenergylett.0c01648
Saidaminov, M. I.; Spanopoulos, I.; Abed, J.; Ke, W.; Wicks, J.; Kanatzidis, M. G.; Sargent, E. H. Conventional solvent oxidizes Sn (II) in perovskite inks. ACS Energy Lett. 2020, 5, 1153-1155, 10.1021/acsenergylett.0c00402
Vaynzof, Y. The future of perovskite photovoltaics-thermal evaporation or solution processing?. Adv. Energy Mater. 2020, 10, 2003073, 10.1002/aenm.202003073
Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395-398, 10.1038/nature12509
Gallet, T.; Poeira, R. G.; Lanzoni, E. M.; Abzieher, T.; Paetzold, U. W.; Redinger, A. Co-evaporation of CH3NH3PbI3: How Growth Conditions Impact Phase Purity, Photostriction, and Intrinsic Stability. ACS Appl. Mater. Interfaces 2021, 13, 2642-2653, 10.1021/acsami.0c19038
Wang, P.; Li, F.; Jiang, K.-J.; Zhang, Y.; Fan, H.; Zhang, Y.; Miao, Y.; Huang, J.-H.; Gao, C.; Zhou, X. et al. Ion exchange/insertion reactions for fabrication of efficient methylammonium tin iodide perovskite solar cells. Adv. Sci. 2020, 7, 1903047, 10.1002/advs.201903047
Ha, M.; Karmakar, A.; Bernard, G. M.; Basilio, E.; Krishnamurthy, A.; Askar, A. M.; Shankar, K.; Kroeker, S.; Michaelis, V. K. Phase Evolution in Methylammonium Tin Halide Perovskites with Variable Temperature Solid-State 119Sn NMR Spectroscopy. J. Phys. Chem. C 2020, 124, 15015-15027, 10.1021/acs.jpcc.0c03589
Lanzoni, E. M.; Gallet, T.; Spindler, C.; Ramírez, O.; Boumenou, C. K.; Siebentritt, S.; Redinger, A. The impact of Kelvin probe force microscopy operation modes and environment on grain boundary band bending in perovskite and Cu(In,Ga)Se2solar cells. Nano Energy 2021, 88, 106270, 10.1016/j.nanoen.2021.106270
Flodstrom, S. A.; Bachrach, R. Z.; Bauer, R. S.; Hagström, S. B. M. Multiple Oxidation States of Al Observed by Photoelectron Spectroscopy of Substrate Core Level Shifts. Phys. Rev. Lett. 1976, 37, 1282-1285, 10.1103/PhysRevLett.37.1282
National Center for Biotechnology Information. PubChem Element Summary for AtomicNumber 50, Tin; https://pubchem.ncbi.nlm.nih.gov/element/Tin (accessed 3 January, 2022).
Ross, R. T. Some Thermodynamics of Photochemical Systems. J. Chem. Phys. 1967, 46, 4590-4593, 10.1063/1.1840606
Shockley, W.; Queisser, H. J. Detailed Balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510-519, 10.1063/1.1736034